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Preface

The goal of this text is focus on a core subset of the natural language processing, unified
by the concepts of learning and search. A remarkable number of problems in natural
language processing can be solved by a compact set of methods:

Search. Viterbi, CKY, minimum spanning tree, shift-reduce, integer linear programming,
beam search.

Learning. Maximum-likelihood estimation, logistic regression, perceptron, expectation-
maximization, matrix factorization, backpropagation.

This text explains how these methods work, and how they can be applied to a wide range
of tasks: document classification, word sense disambiguation, part-of-speech tagging,
named entity recognition, parsing, coreference resolution, relation extraction, discourse
analysis, language modeling, and machine translation.

Background

Because natural language processing draws on many different intellectual traditions, al-
most everyone who approaches it feels underprepared in one way or another. Here is a
summary of what is expected, and where you can learn more:

Mathematics and machine learning. The text assumes a background in multivariate cal-
culus and linear algebra: vectors, matrices, derivatives, and partial derivatives. You
should also be familiar with probability and statistics. A review of basic proba-
bility is found in Appendix A, and a minimal review of numerical optimization is
found in Appendix B. For linear algebra, the online course and textbook from Strang
(2016) provide an excellent review. Deisenroth et al. (2018) are currently preparing
a textbook on Mathematics for Machine Learning, a draft can be found online.! For
an introduction to probabilistic modeling and estimation, see James et al. (2013); for

https://mml-book.github.io/


https://mml-book.github.io/

ii PREFACE

a more advanced and comprehensive discussion of the same material, the classic
reference is Hastie et al. (2009).

Linguistics. This book assumes no formal training in linguistics, aside from elementary
concepts likes nouns and verbs, which you have probably encountered in the study
of English grammar. Ideas from linguistics are introduced throughout the text as
needed, including discussions of morphology and syntax (chapter 9), semantics
(chapters 12 and 13), and discourse (chapter 16). Linguistic issues also arise in the
application-focused chapters 4, 8, and 18. A short guide to linguistics for students
of natural language processing is offered by Bender (2013); you are encouraged to
start there, and then pick up a more comprehensive introductory textbook (e.g., Ak-
majian et al., 2010; Fromkin et al., 2013).

Computer science. The book is targeted at computer scientists, who are assumed to have
taken introductory courses on the analysis of algorithms and complexity theory. In
particular, you should be familiar with asymptotic analysis of the time and memory
costs of algorithms, and with the basics of dynamic programming. The classic text
on algorithms is offered by Cormen et al. (2009); for an introduction to the theory of
computation, see Arora and Barak (2009) and Sipser (2012).

How to use this book

After the introduction, the textbook is organized into four main units:

Learning. This section builds up a set of machine learning tools that will be used through-
out the other sections. Because the focus is on machine learning, the text represen-
tations and linguistic phenomena are mostly simple: “bag-of-words” text classifica-
tion is treated as a model example. Chapter 4 describes some of the more linguisti-
cally interesting applications of word-based text analysis.

Sequences and trees. This section introduces the treatment of language as a structured
phenomena. It describes sequence and tree representations and the algorithms that
they facilitate, as well as the limitations that these representations impose. Chap-
ter 9 introduces finite state automata and briefly overviews a context-free account of
English syntax.

Meaning. This section takes a broad view of efforts to represent and compute meaning
from text, ranging from formal logic to neural word embeddings. It also includes
two topics that are closely related to semantics: resolution of ambiguous references,
and analysis of multi-sentence discourse structure.

Applications. The final section offers chapter-length treatments on three of the most promi-
nent applications of natural language processing: information extraction, machine
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translation, and text generation. Each of these applications merits a textbook length
treatment of its own (Koehn, 2009; Grishman, 2012; Reiter and Dale, 2000); the chap-
ters here explain some of the most well known systems using the formalisms and
methods built up earlier in the book, while introducing methods such as neural at-
tention.

Each chapter contains some advanced material, which is marked with an asterisk.
This material can be safely omitted without causing misunderstandings later on. But
even without these advanced sections, the text is too long for a single semester course, so
instructors will have to pick and choose among the chapters.

Chapters 1-3 provide building blocks that will be used throughout the book, and chap-
ter 4 describes some critical aspects of the practice of language technology. Language
models (chapter 6), sequence labeling (chapter 7), and parsing (chapter 10 and 11) are
canonical topics in natural language processing, and distributed word embeddings (chap-
ter 14) have become ubiquitous. Of the applications, machine translation (chapter 18) is
the best choice: it is more cohesive than information extraction, and more mature than text
generation. Many students will benefit from the review of probability in Appendix A.

e A course focusing on machine learning should add the chapter on unsupervised
learning (chapter 5). The chapters on predicate-argument semantics (chapter 13),
reference resolution (chapter 15), and text generation (chapter 19) are particularly
influenced by recent progress in machine learning, including deep neural networks
and learning to search.

e A course with a more linguistic orientation should add the chapters on applica-
tions of sequence labeling (chapter 8), formal language theory (chapter 9), semantics
(chapter 12 and 13), and discourse (chapter 16).

e For a course with a more applied focus, I recommend the chapters on applications
of sequence labeling (chapter 8), predicate-argument semantics (chapter 13), infor-
mation extraction (chapter 17), and text generation (chapter 19).
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Notation

As a general rule, words, word counts, and other types of observations are indicated with
Roman letters (a, b, c); parameters are indicated with Greek letters («, 3,6). Vectors are
indicated with bold script for both random variables x and parameters . Other useful
notations are indicated in the table below.

Basics
exp x the base-2 exponent, 2*
log x the base-2 logarithm, log, =
{x 3N, the set {z1,x9,..., 2N}
z x; raised to the power j
29

K

indexing by both i and j

Linear algebra

2
Lj:k
[x; ]
[z, y]
en

a column vector of feature counts for instance ¢, often word counts
elements j through k (inclusive) of a vector x

vertical concatenation of two column vectors

horizontal concatenation of two column vectors

a “one-hot” vector with a value of 1 at position n, and zero everywhere

else
the transpose of a column vector

the dot product Zﬁvz 105 x xg.i)
a matrix
row i, column j of matrix X

I 0 0
a matrix with « on the diagonal, e.g., 0 2o O
0 0 I3

the inverse of matrix X



vi

PREFACE

Text datasets

W, word token at position m

N number of training instances

M length of a sequence (of words or tags)

Vv number of words in vocabulary

y® the true label for instance ¢

7 a predicted label

Yy the set of all possible labels

K number of possible labels K = ||

g the start token

[ the stop token

y a structured label for instance 4, such as a tag sequence

Y(w) the set of possible labelings for the word sequence w

O the start tag

¢ the stop tag

Probabilities

Pr(A) probability of event A

Pr(A| B) probability of event A, conditioned on event B

pp(b) the marginal probability of random variable B taking value b; written
p(b) when the choice of random variable is clear from context

Pp 4(b|a)  the probability of random variable B taking value b, conditioned on A
taking value a; written p(b | a) when clear from context

A~p the random variable A is distributed according to distribution p. For
example, X ~ N(0,1) states that the random variable X is drawn from
a normal distribution with zero mean and unit variance.

A|B~p conditioned on the random variable B, A is distributed according to p.2

Machine learning

Uz, y)
f(z®,y)

=

i

>

the score for assigning label y to instance ¢
the feature vector for instance ¢ with label y
a (column) vector of weights

loss on an individual instance %

objective function for an entire dataset
log-likelihood of a dataset

the amount of regularization
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Chapter 1

Introduction

Natural language processing is the set of methods for making human language accessi-
ble to computers. In the past decade, natural language processing has become embedded
in our daily lives: automatic machine translation is ubiquitous on the web and in so-
cial media; text classification keeps our email inboxes from collapsing under a deluge of
spam; search engines have moved beyond string matching and network analysis to a high
degree of linguistic sophistication; dialog systems provide an increasingly common and
effective way to get and share information.

These diverse applications are based on a common set of ideas, drawing on algo-
rithms, linguistics, logic, statistics, and more. The goal of this text is to provide a survey
of these foundations. The technical fun starts in the next chapter; the rest of this current
chapter situates natural language processing with respect to other intellectual disciplines,
identifies some high-level themes in contemporary natural language processing, and ad-
vises the reader on how best to approach the subject.

1.1 Natural language processing and its neighbors

Natural language processing draws on many other intellectual traditions, from formal
linguistics to statistical physics. This section briefly situates natural language processing
with respect to some of its closest neighbors.

Computational Linguistics Most of the meetings and journals that host natural lan-
guage processing research bear the name “computational linguistics”, and the terms may
be thought of as essentially synonymous. But while there is substantial overlap, there is
an important difference in focus. In linguistics, language is the object of study. Computa-
tional methods may be brought to bear, just as in scientific disciplines like computational
biology and computational astronomy, but they play only a supporting role. In contrast,

1



2 CHAPTER 1. INTRODUCTION

natural language processing is focused on the design and analysis of computational al-
gorithms and representations for processing natural human language. The goal of natu-
ral language processing is to provide new computational capabilities around human lan-
guage: for example, extracting information from texts, translating between languages, an-
swering questions, holding a conversation, taking instructions, and so on. Fundamental
linguistic insights may be crucial for accomplishing these tasks, but success is ultimately
measured by whether and how well the job gets done.

Machine Learning Contemporary approaches to natural language processing rely heav-
ily on machine learning, which makes it possible to build complex computer programs
from examples. Machine learning provides an array of general techniques for tasks like
converting a sequence of discrete tokens in one vocabulary to a sequence of discrete to-
kens in another vocabulary — a generalization of what one might informally call “transla-
tion.” Much of today’s natural language processing research can be thought of as applied
machine learning. However, natural language processing has characteristics that distin-
guish it from many of machine learning’s other application domains.

e Unlike images or audio, text data is fundamentally discrete, with meaning created
by combinatorial arrangements of symbolic units. This is particularly consequential
for applications in which text is the output, such as translation and summarization,
because it is not possible to gradually approach an optimal solution.

e Although the set of words is discrete, new words are always being created. Further-
more, the distribution over words (and other linguistic elements) resembles that of a
power law! (Zipf, 1949): there will be a few words that are very frequent, and a long
tail of words that are rare. A consequence is that natural language processing algo-
rithms must be especially robust to observations that do not occur in the training
data.

e Language is compositional: units such as words can combine to create phrases,
which can combine by the very same principles to create larger phrases. For ex-
ample, a noun phrase can be created by combining a smaller noun phrase with a
prepositional phrase, as in the whiteness of the whale. The prepositional phrase is
created by combining a preposition (in this case, of) with another noun phrase (the
whale). In this way, it is possible to create arbitrarily long phrases, such as,

(1.1) ...huge globular pieces of the whale of the bigness of a human head.?

The meaning of such a phrase must be analyzed in accord with the underlying hier-
archical structure. In this case, huge globular pieces of the whale acts as a single noun

"Throughout the text, boldface will be used to indicate keywords that appear in the index.
2Throughout the text, this notation will be used to introduce linguistic examples.
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1.1. NATURAL LANGUAGE PROCESSING AND ITS NEIGHBORS 3

phrase, which is conjoined with the prepositional phrase of the bigness of a human
head. The interpretation would be different if instead, huge globular pieces were con-
joined with the prepositional phrase of the whale of the bigness of a human head —
implying a disappointingly small whale. Even though text appears as a sequence,
machine learning methods must account for its implicit recursive structure.

Artificial Intelligence The goal of artificial intelligence is to build software and robots
with the same range of abilities as humans (Russell and Norvig, 2009). Natural language
processing is relevant to this goal in several ways. On the most basic level, the capacity for
language is one of the central features of human intelligence, and is therefore a prerequi-
site for artificial intelligence.> Second, much of artificial intelligence research is dedicated
to the development of systems that can reason from premises to a conclusion, but such
algorithms are only as good as what they know (Dreyfus, 1992). Natural language pro-
cessing is a potential solution to the “knowledge bottleneck”, by acquiring knowledge
from texts, and perhaps also from conversations. This idea goes all the way back to Tur-
ing’s 1949 paper Computing Machinery and Intelligence, which proposed the Turing test for
determining whether artificial intelligence had been achieved (Turing, 2009).

Conversely, reasoning is sometimes essential for basic tasks of language processing,
such as resolving a pronoun. Winograd schemas are examples in which a single word
changes the likely referent of a pronoun, in a way that seems to require knowledge and
reasoning to decode (Levesque et al., 2011). For example,

(1.2) The trophy doesn’t fit into the brown suitcase because it is too [small/large].

When the final word is small, then the pronoun it refers to the suitcase; when the final
word is large, then it refers to the trophy. Solving this example requires spatial reasoning;
other schemas require reasoning about actions and their effects, emotions and intentions,
and social conventions.

Such examples demonstrate that natural language understanding cannot be achieved
in isolation from knowledge and reasoning. Yet the history of artificial intelligence has
been one of increasing specialization: with the growing volume of research in subdisci-
plines such as natural language processing, machine learning, and computer vision, it is

*This view is shared by some, but not all, prominent researchers in artificial intelligence. Michael
Jordan, a specialist in machine learning, has said that if he had a billion dollars to spend on any large
research project, he would spend it on natural language processing (https://www.reddit.com/r/
MachineLearning/comments/2fxi6v/ama_michael_i_jordan/). On the other hand, in a public dis-
cussion about the future of artificial intelligence in February 2018, computer vision researcher Yann Lecun
argued that despite its many practical applications, language is perhaps “number 300” in the priority list
for artificial intelligence research, and that it would be a great achievement if Al could attain the capa-
bilities of an orangutan, which do not include language (http://www.abigailsee.com/2018/02/21/
deep-learning-structure-and-innate-priors.html).

Under contract with MIT Press, shared under CC-BY-NC-ND license.


https://www.reddit.com/r/MachineLearning/comments/2fxi6v/ama_michael_i_jordan/
https://www.reddit.com/r/MachineLearning/comments/2fxi6v/ama_michael_i_jordan/
http://www.abigailsee.com/2018/02/21/deep-learning-structure-and-innate-priors.html
http://www.abigailsee.com/2018/02/21/deep-learning-structure-and-innate-priors.html

4 CHAPTER 1. INTRODUCTION

difficult for anyone to maintain expertise across the entire field. Still, recent work has
demonstrated interesting connections between natural language processing and other ar-
eas of Al, including computer vision (e.g., Antol et al., 2015) and game playing (e.g.,
Branavan et al., 2009). The dominance of machine learning throughout artificial intel-
ligence has led to a broad consensus on representations such as graphical models and
computation graphs, and on algorithms such as backpropagation and combinatorial opti-
mization. Many of the algorithms and representations covered in this text are part of this
consensus.

Computer Science The discrete and recursive nature of natural language invites the ap-
plication of theoretical ideas from computer science. Linguists such as Chomsky and
Montague have shown how formal language theory can help to explain the syntax and
semantics of natural language. Theoretical models such as finite-state and pushdown au-
tomata are the basis for many practical natural language processing systems. Algorithms
for searching the combinatorial space of analyses of natural language utterances can be
analyzed in terms of their computational complexity, and theoretically motivated approx-
imations can sometimes be applied.

The study of computer systems is also relevant to natural language processing. Large
datasets of unlabeled text can be processed more quickly by parallelization techniques
like MapReduce (Dean and Ghemawat, 2008; Lin and Dyer, 2010); high-volume data
sources such as social media can be summarized efficiently by approximate streaming
and sketching techniques (Goyal et al., 2009). When deep neural networks are imple-
mented in production systemes, it is possible to eke out speed gains using techniques such
as reduced-precision arithmetic (Wu et al., 2016). Many classical natural language process-
ing algorithms are not naturally suited to graphics processing unit (GPU) parallelization,
suggesting directions for further research at the intersection of natural language process-
ing and computing hardware (Yi et al., 2011).

Speech Processing Natural language is often communicated in spoken form, and speech
recognition is the task of converting an audio signal to text. From one perspective, this is
a signal processing problem, which might be viewed as a preprocessing step before nat-
ural language processing can be applied. However, context plays a critical role in speech
recognition by human listeners: knowledge of the surrounding words influences percep-
tion and helps to correct for noise (Miller et al., 1951). For this reason, speech recognition
is often integrated with text analysis, particularly with statistical language models, which
quantify the probability of a sequence of text (see chapter 6). Beyond speech recognition,
the broader field of speech processing includes the study of speech-based dialogue sys-
tems, which are briefly discussed in chapter 19. Historically, speech processing has often
been pursued in electrical engineering departments, while natural language processing

Jacob Eisenstein. Draft of November 13, 2018.



1.1. NATURAL LANGUAGE PROCESSING AND ITS NEIGHBORS 5

has been the purview of computer scientists. For this reason, the extent of interaction
between these two disciplines is less than it might otherwise be.

Ethics As machine learning and artificial intelligence become increasingly ubiquitous, it
is crucial to understand how their benefits, costs, and risks are distributed across differ-
ent kinds of people. Natural language processing raises some particularly salient issues
around ethics, fairness, and accountability:

Access. Who is natural language processing designed to serve? For example, whose lan-
guage is translated from, and whose language is translated to?

Bias. Does language technology learn to replicate social biases from text corpora, and
does it reinforce these biases as seemingly objective computational conclusions?

Labor. Whose text and speech comprise the datasets that power natural language pro-
cessing, and who performs the annotations? Are the benefits of this technology
shared with all the people whose work makes it possible?

Privacy and internet freedom. What is the impact of large-scale text processing on the
right to free and private communication? What is the potential role of natural lan-
guage processing in regimes of censorship or surveillance?

This text lightly touches on issues related to fairness and bias in § 14.6.3 and § 18.1.1,
but these issues are worthy of a book of their own. For more from within the field of
computational linguistics, see the papers from the annual workshop on Ethics in Natural
Language Processing (Hovy et al., 2017; Alfano et al., 2018). For an outside perspective on
ethical issues relating to data science at large, see boyd and Crawford (2012).

Others Natural language processing plays a significant role in emerging interdisciplinary
tields like computational social science and the digital humanities. Text classification
(chapter 4), clustering (chapter 5), and information extraction (chapter 17) are particularly
useful tools; another is probabilistic topic models (Blei, 2012), which are not covered in
this text. Information retrieval (Manning et al., 2008) makes use of similar tools, and
conversely, techniques such as latent semantic analysis (§ 14.3) have roots in information
retrieval. Text mining is sometimes used to refer to the application of data mining tech-
niques, especially classification and clustering, to text. While there is no clear distinction
between text mining and natural language processing (nor between data mining and ma-
chine learning), text mining is typically less concerned with linguistic structure, and more
interested in fast, scalable algorithms.
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6 CHAPTER 1. INTRODUCTION

1.2 Three themes in natural language processing

Natural language processing covers a diverse range of tasks, methods, and linguistic phe-
nomena. But despite the apparent incommensurability between, say, the summarization
of scientific articles (§ 16.3.4) and the identification of suffix patterns in Spanish verbs
(§9.1.4), some general themes emerge. The remainder of the introduction focuses on these
themes, which will recur in various forms through the text. Each theme can be expressed
as an opposition between two extreme viewpoints on how to process natural language.
The methods discussed in the text can usually be placed somewhere on the continuum
between these two extremes.

1.2.1 Learning and knowledge

A recurring topic of debate is the relative importance of machine learning and linguistic
knowledge. On one extreme, advocates of “natural language processing from scratch” (Col-
lobert et al., 2011) propose to use machine learning to train end-to-end systems that trans-
mute raw text into any desired output structure: e.g., a summary, database, or transla-
tion. On the other extreme, the core work of natural language processing is sometimes
taken to be transforming text into a stack of general-purpose linguistic structures: from
subword units called morphemes, to word-level parts-of-speech, to tree-structured repre-
sentations of grammar, and beyond, to logic-based representations of meaning. In theory,
these general-purpose structures should then be able to support any desired application.

The end-to-end approach has been buoyed by recent results in computer vision and
speech recognition, in which advances in machine learning have swept away expert-
engineered representations based on the fundamentals of optics and phonology (Krizhevsky
et al., 2012; Graves and Jaitly, 2014). But while machine learning is an element of nearly
every contemporary approach to natural language processing, linguistic representations
such as syntax trees have not yet gone the way of the visual edge detector or the auditory
triphone. Linguists have argued for the existence of a “language faculty” in all human be-
ings, which encodes a set of abstractions specially designed to facilitate the understanding
and production of language. The argument for the existence of such a language faculty
is based on the observation that children learn language faster and from fewer examples
than would be possible if language was learned from experience alone.* From a practi-
cal standpoint, linguistic structure seems to be particularly important in scenarios where
training data is limited.

There are a number of ways in which knowledge and learning can be combined in
natural language processing. Many supervised learning systems make use of carefully
engineered features, which transform the data into a representation that can facilitate

*The Language Instinct (Pinker, 2003) articulates these arguments in an engaging and popular style. For
arguments against the innateness of language, see Elman et al. (1998).

Jacob Eisenstein. Draft of November 13, 2018.



1.2. THREE THEMES IN NATURAL LANGUAGE PROCESSING 7

learning. For example, in a task like search, it may be useful to identify each word’s stem,
so that a system can more easily generalize across related terms such as whale, whales,
whalers, and whaling. (This issue is relatively benign in English, as compared to the many
other languages which include much more elaborate systems of prefixed and suffixes.)
Such features could be obtained from a hand-crafted resource, like a dictionary that maps
each word to a single root form. Alternatively, features can be obtained from the output of
a general-purpose language processing system, such as a parser or part-of-speech tagger,
which may itself be built on supervised machine learning.

Another synthesis of learning and knowledge is in model structure: building machine
learning models whose architectures are inspired by linguistic theories. For example, the
organization of sentences is often described as compositional, with meaning of larger
units gradually constructed from the meaning of their smaller constituents. This idea
can be built into the architecture of a deep neural network, which is then trained using
contemporary deep learning techniques (Dyer et al., 2016).

The debate about the relative importance of machine learning and linguistic knowl-
edge sometimes becomes heated. No machine learning specialist likes to be told that their
engineering methodology is unscientific alchemy;” nor does a linguist want to hear that
the search for general linguistic principles and structures has been made irrelevant by big
data. Yet there is clearly room for both types of research: we need to know how far we
can go with end-to-end learning alone, while at the same time, we continue the search for
linguistic representations that generalize across applications, scenarios, and languages.
For more on the history of this debate, see Church (2011); for an optimistic view of the
potential symbiosis between computational linguistics and deep learning, see Manning
(2015).

1.2.2 Search and learning

Many natural language processing problems can be written mathematically in the form
of optimization,6

y = argmax V(x,y; 0), [1.1]
yeY(x)

where,

e x is the input, which is an element of a set X’;

e y is the output, which is an element of a set J(x);

>Ali Rahimi argued that much of deep learning research was similar to “alchemy” in a presentation at
the 2017 conference on Neural Information Processing Systems. He was advocating for more learning theory,
not more linguistics.

6Throughout this text, equations will be numbered by square brackets, and linguistic examples will be
numbered by parentheses.
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8 CHAPTER 1. INTRODUCTION

e VU is a scoring function (also called the model), which maps from the set X x ) to
the real numbers;

e 0 is a vector of parameters for U;

e y is the predicted output, which is chosen to maximize the scoring function.

This basic structure can be applied to a huge range of problems. For example, the input
x might be a social media post, and the output y might be a labeling of the emotional
sentiment expressed by the author (chapter 4); or « could be a sentence in French, and the
output y could be a sentence in Tamil (chapter 18); or  might be a sentence in English,
and y might be a representation of the syntactic structure of the sentence (chapter 10); or
x might be a news article and y might be a structured record of the events that the article
describes (chapter 17).

This formulation reflects an implicit decision that language processing algorithms will
have two distinct modules:

Search. The search module is responsible for computing the argmax of the function V. In
other words, it finds the output y that gets the best score with respect to the input «.
This is easy when the search space )(x) is small enough to enumerate, or when the
scoring function ¥ has a convenient decomposition into parts. In many cases, we
will want to work with scoring functions that do not have these properties, moti-
vating the use of more sophisticated search algorithms, such as bottom-up dynamic
programming (§ 10.1) and beam search (§ 11.3.1). Because the outputs are usually
discrete in language processing problems, search often relies on the machinery of
combinatorial optimization.

Learning. The learning module is responsible for finding the parameters 8. This is typ-
ically (but not always) done by processing a large dataset of labeled examples,
{(z®,y@)}Y . Like search, learning is also approached through the framework
of optimization, as we will see in chapter 2. Because the parameters are usually
continuous, learning algorithms generally rely on numerical optimization to iden-
tify vectors of real-valued parameters that optimize some function of the model and
the labeled data. Some basic principles of numerical optimization are reviewed in

Appendix B.

The division of natural language processing into separate modules for search and
learning makes it possible to reuse generic algorithms across many tasks and models.
Much of the work of natural language processing can be focused on the design of the
model ¥ — identifying and formalizing the linguistic phenomena that are relevant to the
task at hand — while reaping the benefits of decades of progress in search, optimization,
and learning. This textbook will describe several classes of scoring functions, and the
corresponding algorithms for search and learning.

Jacob Eisenstein. Draft of November 13, 2018.



1.2. THREE THEMES IN NATURAL LANGUAGE PROCESSING 9

When a model is capable of making subtle linguistic distinctions, it is said to be ex-
pressive. Expressiveness is often traded off against efficiency of search and learning. For
example, a word-to-word translation model makes search and learning easy, but it is not
expressive enough to distinguish good translations from bad ones. Many of the most im-
portant problems in natural language processing seem to require expressive models, in
which the complexity of search grows exponentially with the size of the input. In these
models, exact search is usually impossible. Intractability threatens the neat modular de-
composition between search and learning: if search requires a set of heuristic approxima-
tions, then it may be advantageous to learn a model that performs well under these spe-
cific heuristics. This has motivated some researchers to take a more integrated approach
to search and learning, as briefly mentioned in chapters 11 and 15.

1.2.3 Relational, compositional, and distributional perspectives

Any element of language — a word, a phrase, a sentence, or even a sound — can be
described from at least three perspectives. Consider the word journalist. A journalist is
a subcategory of a profession, and an anchorwoman is a subcategory of journalist; further-
more, a journalist performs journalism, which is often, but not always, a subcategory of
writing. This relational perspective on meaning is the basis for semantic ontologies such
as WORDNET (Fellbaum, 2010), which enumerate the relations that hold between words
and other elementary semantic units. The power of the relational perspective is illustrated
by the following example:

(1.3) Umashanthi interviewed Ana. She works for the college newspaper.

Who works for the college newspaper? The word journalist, while not stated in the ex-
ample, implicitly links the interview to the newspaper, making Umashanthi the most likely
referent for the pronoun. (A general discussion of how to resolve pronouns is found in
chapter 15.)

Yet despite the inferential power of the relational perspective, it is not easy to formalize
computationally. Exactly which elements are to be related? Are journalists and reporters
distinct, or should we group them into a single unit? Is the kind of interview performed by
a journalist the same as the kind that one undergoes when applying for a job? Ontology
designers face many such thorny questions, and the project of ontology design hearkens
back to Borges” (1993) Celestial Emporium of Benevolent Knowledge, which divides animals
into:

(a) belonging to the emperor; (b) embalmed; (c) tame; (d) suckling pigs; (e)
sirens; (f) fabulous; (g) stray dogs; (h) included in the present classification;
(i) frenzied; (j) innumerable; (k) drawn with a very fine camelhair brush; (1) et
cetera; (m) having just broken the water pitcher; (n) that from a long way off
resemble flies.
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Difficulties in ontology construction have led some linguists to argue that there is no task-
independent way to partition up word meanings (Kilgarriff, 1997).

Some problems are easier. Each member in a group of journalists is a journalist: the -s
suffix distinguishes the plural meaning from the singular in most of the nouns in English.
Similarly, a journalist can be thought of, perhaps colloquially, as someone who produces or
works on a journal. (Taking this approach even further, the word journal derives from the
French jour+nal, or day+ly = daily.) In this way, the meaning of a word is constructed from
the constituent parts — the principle of compositionality. This principle can be applied
to larger units: phrases, sentences, and beyond. Indeed, one of the great strengths of the
compositional view of meaning is that it provides a roadmap for understanding entire
texts and dialogues through a single analytic lens, grounding out in the smallest parts of
individual words.

But alongside journalists and anti-parliamentarians, there are many words that seem
to be linguistic atoms: think, for example, of whale, blubber, and Nantucket. Idiomatic
phrases like kick the bucket and shoot the breeze have meanings that are quite different from
the sum of their parts (Sag et al., 2002). Composition is of little help for such words and
expressions, but their meanings can be ascertained — or at least approximated — from the
contexts in which they appear. Take, for example, blubber, which appears in such contexts
as:

(1.4) a. Theblubber served them as fuel.
b. ...extracting it from the blubber of the large fish ...
c. Amongst oily substances, blubber has been employed as a manure.

These contexts form the distributional properties of the word blubber, and they link it to
words which can appear in similar constructions: fat, pelts, and barnacles. This distribu-
tional perspective makes it possible to learn about meaning from unlabeled data alone;
unlike relational and compositional semantics, no manual annotation or expert knowl-
edge is required. Distributional semantics is thus capable of covering a huge range of
linguistic phenomena. However, it lacks precision: blubber is similar to fat in one sense, to
pelts in another sense, and to barnacles in still another. The question of why all these words
tend to appear in the same contexts is left unanswered.

The relational, compositional, and distributional perspectives all contribute to our un-
derstanding of linguistic meaning, and all three appear to be critical to natural language
processing. Yet they are uneasy collaborators, requiring seemingly incompatible represen-
tations and algorithmic approaches. This text presents some of the best known and most
successful methods for working with each of these representations, but future research
may reveal new ways to combine them.

Jacob Eisenstein. Draft of November 13, 2018.
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Chapter 2

Linear text classification

We begin with the problem of text classification: given a text document, assign it a dis-
crete label y € Y, where ) is the set of possible labels. Text classification has many ap-
plications, from spam filtering to the analysis of electronic health records. This chapter
describes some of the most well known and effective algorithms for text classification,
from a mathematical perspective that should help you understand what they do and why
they work. Text classification is also a building block in more elaborate natural language
processing tasks. For readers without a background in machine learning or statistics, the
material in this chapter will take more time to digest than most of the subsequent chap-
ters. But this investment will pay off as the mathematical principles behind these basic
classification algorithms reappear in other contexts throughout the book.

2.1 The bag of words

To perform text classification, the first question is how to represent each document, or
instance. A common approach is to use a column vector of word counts, e.g.,, =
[0,1,1,0,0,2,0,1,13,0...]7, where z; is the count of word j. The length of x is V' £ |V,
where V is the set of possible words in the vocabulary. In linear classification, the classi-
tication decision is based on a weighted sum of individual feature counts, such as word
counts.

The object x is a vector, but it is often called a bag of words, because it includes only
information about the count of each word, and not the order in which the words appear.
With the bag of words representation, we are ignoring grammar, sentence boundaries,
paragraphs — everything but the words. Yet the bag of words model is surprisingly
effective for text classification. If you see the word whale in a document, is it fiction or non-
fiction? What if you see the word molybdenum? For many labeling problems, individual
words can be strong predictors.
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14 CHAPTER 2. LINEAR TEXT CLASSIFICATION

To predict a label from a bag-of-words, we can assign a score to each word in the vo-
cabulary, measuring the compatibility with the label. For example, for the label FICTION,
we might assign a positive score to the word whale, and a negative score to the word
molybdenum. These scores are called weights, and they are arranged in a column vector 6.

Suppose that you want a multiclass classifier, where K £ || > 2. For example, you
might want to classify news stories about sports, celebrities, music, and business. The goal
is to predict a label ¢, given the bag of words «, using the weights 6. For each label y € ),
we compute a score U(x, y), which is a scalar measure of the compatibility between the
bag-of-words x and the label y. In a linear bag-of-words classifier, this score is the vector
inner product between the weights 8 and the output of a feature function f(x,y),

U(x,y) =0 flz,y) =Y 0,fi(x.y). [2.1]
J

As the notation suggests, f is a function of two arguments, the word counts x and the
label y, and it returns a vector output. For example, given arguments x and y, element j
of this feature vector might be,

if y = FICTION
filz,y) = {xw’”’l‘” nY [2.2]

0, otherwise

This function returns the count of the word whale if the label is FICTION, and it returns zero
otherwise. The index j depends on the position of whale in the vocabulary, and of FICTION
in the set of possible labels. The corresponding weight ; then scores the compatibility of
the word whale with the label FICTION.! A positive score means that this word makes the
label more likely.

The output of the feature function can be formalized as a vector:

fl@,y=1)=[x;0;0;...;0] [2.3]
———
(K-1)xV
flx,y=2)=10;0;...;0;2;0;0;...;0] [2.4]
% (K—2)xV
f@,y=K)=[0;0;...;0;z], [2.5]
——
(K-1)xV
where [0;0;...;0] is a column vector of (K — 1) x V zeros, and the semicolon indicates
———

(K=1)xV
vertical concatenation. For each of the K possible labels, the feature function returns a

'In practice, both f and @ may be implemented as a dictionary rather than vectors, so that it is not
necessary to explicitly identify j. In such an implementation, the tuple (whale, FICTION) acts as a key in both
dictionaries; the values in f are feature counts, and the values in 6 are weights.
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2.1. THE BAG OF WORDS 15

vector that is mostly zeros, with a column vector of word counts x inserted in a location
that depends on the specific label y. This arrangement is shown in Figure 2.1. The notation
may seem awkward at first, but it generalizes to an impressive range of learning settings,
particularly structure prediction, which is the focus of Chapters 7-11.

Given a vector of weights, 8 € RV, we can now compute the score ¥(z,y) by Equa-

tion 2.1. This inner product gives a scalar measure of the compatibility of the observation
x with label y.> For any document x, we predict the label 3,

g =argmax V(x,y) [2.6]
yey

This inner product notation gives a clean separation between the data (x and y) and the
parameters ().

While vector notation is used for presentation and analysis, in code the weights and
feature vector can be implemented as dictionaries. The inner product can then be com-
puted as a loop. In python:

def compute_score (x,y,weights):
total = 0
for feature,count in feature_function(x,y).items():
total += weights[feature] * count
return total

This representation is advantageous because it avoids storing and iterating over the many
features whose counts are zero.

It is common to add an offset feature at the end of the vector of word counts x, which
is always 1. We then have to also add an extra zero to each of the zero vectors, to make the
vector lengths match. This gives the entire feature vector f(x,y) alength of (V + 1) x K.
The weight associated with this offset feature can be thought of as a bias for or against
each label. For example, if we expect most emails to be spam, then the weight for the
offset feature for y = SPAM should be larger than the weight for the offset feature for
y = NOT-SPAM.

Returning to the weights 8, where do they come from? One possibility is to set them
by hand. If we wanted to distinguish, say, English from Spanish, we can use English
and Spanish dictionaries, and set the weight to one for each word that appears in the

2Only V x (K — 1) features and weights are necessary. By stipulating that ¥(z,y = K) = 0 regardless of
x, it is possible to implement any classification rule that can be achieved with V' x K features and weights.
This is the approach taken in binary classification rules like y = Sign(8- ¢+ a), where 3 is a vector of weights,
a is an offset, and the label set is ) = {—1,1}. However, for multiclass classification, it is more concise to
write 0 - f(x,y) forally € V.

Under contract with MIT Press, shared under CC-BY-NC-ND license.
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Original text 4 Bag of words 4 Feature vector

T~

0 | aardvark ]

0 ..

1| best 0 y=Fiction
0 ..

2 it

0 ..

2 | of X  y=News
0 ..

2 | the

0 .. )
2 | times 0 Yy=Gossip
0l ..

2 | was [

0l ..

1  worst 0 y=Sports
0l ..

0 | zyxt L

1 | <OFFSET>

X f(x y=News)

Figure 2.1: The bag-of-words and feature vector representations, for a hypothetical text
classification task.

associated dictionary. For example,?

0B picycle) =1 05 picyctey =0

0/ & picicleta) =0 05 picicleta) =1
0(E,con) =1 0(5,con) =1

0 & ordinatenr) =0 0 s ordinateur) =0-

Similarly, if we want to distinguish positive and negative sentiment, we could use posi-
tive and negative sentiment lexicons (see § 4.1.2), which are defined by social psycholo-
gists (Tausczik and Pennebaker, 2010).

But it is usually not easy to set classification weights by hand, due to the large number
of words and the difficulty of selecting exact numerical weights. Instead, we will learn the
weights from data. Email users manually label messages as SPAM; newspapers label their
own articles as BUSINESS or STYLE. Using such instance labels, we can automatically
acquire weights using supervised machine learning. This chapter will discuss several
machine learning approaches for classification. The first is based on probability. For a
review of probability, consult Appendix A.

3In this notation, each tuple (language, word) indexes an element in 8, which remains a vector.
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2.2 Naive Bayes

The joint probability of a bag of words x and its true label y is written p(z, y). Suppose
we have a dataset of N labeled instances, {(x(*,4®)}Y , which we assume are indepen-
dent and identically distributed (IID) (see § A.3). Then the joint probability of the entire
dataset, written p(x(1:N) (1)) is equal to [, pX7Y(ac(i), y() 4

What does this have to do with classification? One approach to classification is to set

the weights 6 so as to maximize the joint probability of a training set of labeled docu-
ments. This is known as maximum likelihood estimation:

0 = argmaxp(az(lw),y(lzm; 0) [2.8]
o
N
_ @) ,@). 9 29
argmax Y,y .
gn gp< y';6) 29]
N . .
= argmax Z log p(a:(l), y@: 0). [2.10]
o =

The notation p(x*), y(*); 8) indicates that 8 is a parameter of the probability function. The
product of probabilities can be replaced by a sum of log-probabilities because the log func-
tion is monotonically increasing over positive arguments, and so the same 8 will maxi-
mize both the probability and its logarithm. Working with logarithms is desirable because
of numerical stability: on a large dataset, multiplying many probabilities can underflow
to zero.”

The probability p(x(?), y("); 8) is defined through a generative model — an idealized
random process that has generated the observed data.® Algorithm 1 describes the gener-
ative model underlying the Naive Bayes classifier, with parameters 0 = {u, ¢}.

e The first line of this generative model encodes the assumption that the instances are
mutually independent: neither the label nor the text of document ¢ affects the label
or text of document j.” Furthermore, the instances are identically distributed: the

“The notation p Y(w“), yV) indicates the joint probability that random variables X and Y take the

specific values ¥ and (¥ respectively. The subscript will often be omitted when it is clear from context.
For a review of random variables, see Appendix A.

5 Throughout this text, you may assume all logarithms and exponents are base 2, unless otherwise indi-
cated. Any reasonable base will yield an identical classifier, and base 2 is most convenient for working out
examples by hand.

%Generative models will be used throughout this text. They explicitly define the assumptions underlying
the form of a probability distribution over observed and latent variables. For a readable introduction to
generative models in statistics, see Blei (2014).

’Can you think of any cases in which this assumption is too strong?
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18 CHAPTER 2. LINEAR TEXT CLASSIFICATION

Algorithm 1 Generative process for the Naive Bayes classification model

for Instance i € {1,2,..., N} do:
Draw the label y(?) ~ Categorical(u);
Draw the word counts () | y(®) ~ Multinomial(¢, ) )-

distributions over the label (¥ and the text (* (conditioned on y(?)) are the same
for all instances 7. In other words, we make the assumption that every document
has the same distribution over labels, and that each document’s distribution over
words depends only on the label, and not on anything else about the document. We
also assume that the documents don’t affect each other: if the word whale appears
in document ¢ = 7, that does not make it any more or less likely that it will appear
again in document ¢ = 8.

e The second line of the generative model states that the random variable y*) is drawn
from a categorical distribution with parameter p. Categorical distributions are like
weighted dice: the column vector p = [u1;p9;...; K| gives the probabilities of
each label, so that the probability of drawing label y is equal to y,. For example, if
Y = {POSITIVE, NEGATIVE, NEUTRAL}, we might have p = [0.1;0.7; 0.2]. We require
> ey by = land py, > 0, Vy € Y: each label’s probability is non-negative, and the
sum of these probabilities is equal to one. 8

e The third line describes how the bag-of-words counts x(*) are generated. By writing
2 | 4, this line indicates that the word counts are conditioned on the label, so
that the joint probability is factored using the chain rule,

Pxy @, yD) = p iy (@ | yD) x py (). [2.11]
The specific distribution p x|y is the multinomial, which is a probability distribu-
tion over vectors of non-negative counts. The probability mass function for this
distribution is:

L
Poae(®; @) =B(x) [ [ ¢} [2.12]
j=1
(Zyﬂ xj>!
= [2.13]
@)

8Formally, we require p € AX=1 where AKX listhe K — 1 probability simplex, the set of all vectors of
K nonnegative numbers that sum to one. Because of the sum-to-one constraint, there are K — 1 degrees of
freedom for a vector of size K.

Jacob Eisenstein. Draft of November 13, 2018.



2.2. NAIVE BAYES 19

As in the categorical distribution, the parameter ¢; can be interpreted as a probabil-
ity: specifically, the probability that any given token in the document is the word j.
The multinomial distribution involves a product over words, with each term in the
product equal to the probability ¢;, exponentiated by the count ;. Words that have
zero count play no role in this product, because qﬁg = 1. The term B(x) is called the
multinomial coefficient. It doesn’t depend on ¢, and can usually be ignored. Can
you see why we need this term at all?’

The notation p(x | y;¢) indicates the conditional probability of word counts x
given label y, with parameter ¢, which is equal to p . (z; ¢,). By specifying the
multinomial distribution, we describe the multinomial Naive Bayes classifier. Why
“naive”? Because the multinomial distribution treats each word token indepen-
dently, conditioned on the class: the probability mass function factorizes across the
counts.!”

2.21 Types and tokens

A slight modification to the generative model of Naive Bayes is shown in Algorithm 2.
Instead of generating a vector of counts of types, x, this model generates a sequence of
tokens, w = (w1, ws, ..., wy). The distinction between types and tokens is critical: z; €
{0,1,2,..., M} is the count of word type j in the vocabulary, e.g., the number of times
the word cannibal appears; w,, € V is the identity of token m in the document, e.g. w,, =
cannibal.

The probability of the sequence w is a product of categorical probabilities. Algorithm 2

makes a conditional independence assumption: each token w) is independent of all other

tokens wfgém, conditioned on the label y(i). This is identical to the “naive” independence
assumption implied by the multinomial distribution, and as a result, the optimal parame-
ters for this model are identical to those in multinomial Naive Bayes. For any instance, the
probability assigned by this model is proportional to the probability under multinomial
Naive Bayes. The constant of proportionality is the multinomial coefficient B(x). Because
B(x) > 1, the probability for a vector of counts x is at least as large as the probability
for a list of words w that induces the same counts: there can be many word sequences
that correspond to a single vector of counts. For example, man bites dog and dog bites man
correspond to an identical count vector, {bites : 1,dog : 1,man : 1}, and B(x) is equal to
the total number of possible word orderings for count vector x.

Technically, a multinomial distribution requires a second parameter, the total number of word counts
in . In the bag-of-words representation is equal to the number of words in the document. However, this
parameter is irrelevant for classification.

You can plug in any probability distribution to the generative story and it will still be Naive Bayes, as
long as you are making the “naive” assumption that the features are conditionally independent, given the
label. For example, a multivariate Gaussian with diagonal covariance is naive in exactly the same sense.
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Algorithm 2 Alternative generative process for the Naive Bayes classification model

for Instance i € {1,2,..., N} do:
Draw the label y(?) ~ Categorical(u);
for Tokenm € {1,2,...,M;} do:

Draw the token w(z) | y® ~ Categorical(¢, ).

Sometimes it is useful to think of instances as counts of types, x; other times, it is
better to think of them as sequences of tokens, w. If the tokens are generated from a
model that assumes conditional independence, then these two views lead to probability
models that are identical, except for a scaling factor that does not depend on the label or
the parameters.

2.2.2 Prediction

The Naive Bayes prediction rule is to choose the label y which maximizes log p(z, y; it, ¢):
y = argmax log p(x,y; u, ) [2.14]
y

=argmaxlogp(z | y; ¢) + log p(y; p) [2.15]
Y

Now we can plug in the probability distributions from the generative story.

1%
logp(x | y; @) + logp(y; u) =log | B Hd)ﬁ@] + log uy [2.16]

7=1

1%
=log B(x) + Y _x;log ¢y; + log iy [2.17]

J:
=log B(z) + 6 - f(z,y), [2.18]

where

0 =01, ;005 [2.19]
0W) = [log ¢y.13108 by.2: - .. 3 log by v31og 1y [2.20]

The feature function f(x,y) is a vector of V word counts and an offset, padded by
zeros for the labels not equal to y (see Equations 2.3-2.5, and Figure 2.1). This construction
ensures that the inner product 8 - f(x,y) only activates the features whose weights are
in ). These features and weights are all we need to compute the joint log-probability
logp(z,y) for each y. This is a key point: through this notation, we have converted the
problem of computing the log-likelihood for a document-label pair (z, y) into the compu-
tation of a vector inner product.

Jacob Eisenstein. Draft of November 13, 2018.



2.2. NAIVE BAYES 21

2.2.3 Estimation

The parameters of the categorical and multinomial distributions have a simple interpre-
tation: they are vectors of expected frequencies for each possible event. Based on this
interpretation, it is tempting to set the parameters empirically,

. (%)
o count(y, 7) B D=y T 2.21
by = v oV (@)’ [2.21]
> =1 count(y, j') D1 Dy (=g T

where count(y, j) refers to the count of word j in documents with label y.

Equation 2.21 defines the relative frequency estimate for ¢. It can be justified as a
maximum likelihood estimate: the estimate that maximizes the probability p(z(1:N), y(1:N); g).
Based on the generative model in Algorithm 1, the log-likelihood is,

N
£(¢7 IJ’) = Z IOg pmult(w(i); ¢y(i)) + IOg pcat(y(i); ,U;), [222]
=1

which is now written as a function £ of the parameters ¢ and . Let’s continue to focus
on the parameters ¢. Since p(y) is constant with respect to ¢, we can drop it:

N N 1%
L(#) = log PP ) = > log Bx®) + 3 2l log o, [2.23]
i=1 i=1 j=1

where B(x(?) is constant with respect to ¢.

Maximum-likelihood estimation chooses ¢ to maximize the log-likelihood £. How-
ever, the solution must obey the following constraints:

1%
Y dyi=1 Wy [2.24]
j=1

These constraints can be incorporated by adding a set of Lagrange multipliers to the objec-
tive (see Appendix B for more details). To solve for each 8,, we maximize the Lagrangian,

4 v
o) = > S alVlogay; — A" s - 1). [2.25]
iy(D=y j=1 j=1
Differentiating with respect to the parameter ¢, ; yields,
ov i
8(¢y) S I Y [2.26]
¢y7j zy(l):y
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The solution is obtained by setting each element in this vector of derivatives equal to zero,

Ayj= > a) [2.27]
iy =y
b Y @l =35 (49 =)l = count(y,j), [2.28]

where § (y(i) = y) is a delta function, also sometimes called an indicator function, which
returns one if y(*) = y. The symbol o indicates that ¢, ; is proportional to the right-hand
side of the equation.

Equation 2.28 shows three different notations for the same thing: a sum over the word
counts for all documents i such that the label y(9 = y. This gives a solution for each
¢, up to a constant of proportionality. Now recall the constraint Z;/:l ¢y; = 1, which
arises because ¢, represents a vector of probabilities for each word in the vocabulary.
This constraint leads to an exact solution, which does not depend on A:

count(y, j
By = ity ) [2.29]
> =1 count(y, j')

This is equal to the relative frequency estimator from Equation 2.21. A similar derivation
gives iy oc SN 8 (y) = y).

2.24 Smoothing

With text data, there are likely to be pairs of labels and words that never appear in the
training set, leaving ¢, ; = 0. For example, the word molybdenum may have never yet
appeared in a work of fiction. But choosing a value of ¢ricrion, molybdenum = 0 would allow
this single feature to completely veto a label, since p(FICTION | &) = 0 if o1 pdenum > 0.

This is undesirable, because it imposes high variance: depending on what data hap-
pens to be in the training set, we could get vastly different classification rules. One so-
lution is to smooth the probabilities, by adding a “pseudocount” of « to each count, and
then normalizing.

a + count(y, j)

 Va+ 225:1 count(y, j')

Py, [2.30]

This is called Laplace smoothing.!! The pseudocount « is a hyperparameter, because it
controls the form of the log-likelihood function, which in turn drives the estimation of ¢.

"Laplace smoothing has a Bayesian justification, in which the generative model is extended to include ¢
as a random variable. The resulting distribution over ¢ depends on both the data (x and y) and the prior
probability p(¢; ). The corresponding estimate of ¢ is called maximum a posteriori, or MAP. This is in
contrast with maximum likelihood, which depends only on the data.
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Smoothing reduces variance, but moves us away from the maximum likelihood esti-
mate: it imposes a bias. In this case, the bias points towards uniform probabilities. Ma-
chine learning theory shows that errors on heldout data can be attributed to the sum of
bias and variance (Mohri et al., 2012). In general, techniques for reducing variance often
increase the bias, leading to a bias-variance tradeoff.

e Unbiased classifiers may overfit the training data, yielding poor performance on
unseen data.

e But if the smoothing is too large, the resulting classifier can underfit instead. In the
limit of & — oo, there is zero variance: you get the same classifier, regardless of the
data. However, the bias is likely to be large.

Similar issues arise throughout machine learning. Later in this chapter we will encounter
regularization, which controls the bias-variance tradeoff for logistic regression and large-
margin classifiers (§ 2.5.1); § 3.3.2 describes techniques for controlling variance in deep
learning; chapter 6 describes more elaborate methods for smoothing empirical probabili-
ties.

2.2.5 Setting hyperparameters

Returning to Naive Bayes, how should we choose the best value of hyperparameters like
a? Maximum likelihood will not work: the maximum likelihood estimate of o on the
training set will always be @ = 0. In many cases, what we really want is accuracy: the
number of correct predictions, divided by the total number of predictions. (Other mea-
sures of classification performance are discussed in § 4.4.) As we will see, it is hard to opti-
mize for accuracy directly. But for scalar hyperparameters like «, tuning can be performed
by a simple heuristic called grid search: try a set of values (e.g., & € {0.001,0.01,0.1, 1, 10}),
compute the accuracy for each value, and choose the setting that maximizes the accuracy.

The goal is to tune « so that the classifier performs well on unseen data. For this reason,
the data used for hyperparameter tuning should not overlap the training set, where very
small values of a will be preferred. Instead, we hold out a development set (also called
a tuning set) for hyperparameter selection. This development set may consist of a small
fraction of the labeled data, such as 10%.

We also want to predict the performance of our classifier on unseen data. To do this,
we must hold out a separate subset of data, called the test set. It is critical that the test set
not overlap with either the training or development sets, or else we will overestimate the
performance that the classifier will achieve on unlabeled data in the future. The test set
should also not be used when making modeling decisions, such as the form of the feature
function, the size of the vocabulary, and so on (these decisions are reviewed in chapter 4.)
The ideal practice is to use the test set only once — otherwise, the test set is used to guide
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the classifier design, and test set accuracy will diverge from accuracy on truly unseen
data. Because annotated data is expensive, this ideal can be hard to follow in practice,
and many test sets have been used for decades. But in some high-impact applications like
machine translation and information extraction, new test sets are released every year.

When only a small amount of labeled data is available, the test set accuracy can be
unreliable. K-fold cross-validation is one way to cope with this scenario: the labeled
data is divided into K folds, and each fold acts as the test set, while training on the other
folds. The test set accuracies are then aggregated. In the extreme, each fold is a single data
point; this is called leave-one-out cross-validation. To perform hyperparameter tuning
in the context of cross-validation, another fold can be used for grid search. It is important
not to repeatedly evaluate the cross-validated accuracy while making design decisions
about the classifier, or you will overstate the accuracy on truly unseen data.

2.3 Discriminative learning

Naive Bayes is easy to work with: the weights can be estimated in closed form, and the
probabilistic interpretation makes it relatively easy to extend. However, the assumption
that features are independent can seriously limit its accuracy. Thus far, we have defined
the feature function f(x,y) so that it corresponds to bag-of-words features: one feature
per word in the vocabulary. In natural language, bag-of-words features violate the as-
sumption of conditional independence — for example, the probability that a document
will contain the word naive is surely higher given that it also contains the word Bayes —
but this violation is relatively mild.

However, good performance on text classification often requires features that are richer
than the bag-of-words:

e To better handle out-of-vocabulary terms, we want features that apply to multiple
words, such as prefixes and suffixes (e.g., anti-, un-, -ing) and capitalization.

e We also want n-gram features that apply to multi-word units: bigrams (e.g., not
good, not bad), trigrams (e.g., not so bad, lacking any decency, never before imagined), and
beyond.

These features flagrantly violate the Naive Bayes independence assumption. Consider
what happens if we add a prefix feature. Under the Naive Bayes assumption, the joint
probability of a word and its prefix are computed with the following approximation:'?

Pr(word = unfit, prefix = un- | y) ~ Pr(prefix = un- | y) x Pr(word = unfit | y).

?The notation Pr(-) refers to the probability of an event, and p(-) refers to the probability density or mass
for a random variable (see Appendix A).
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To test the quality of the approximation, we can manipulate the left-hand side by applying
the chain rule,

Pr(word = unfit, prefix = un- | y) = Pr(prefix = un- | word = unfit, y) [2.31]
x Pr(word = unfit | y) [2.32]

But Pr(prefix = un- | word = unfit,y) = 1, since un- is guaranteed to be the prefix for the
word unfit. Therefore,

Pr(word = unfit, prefix = un- | y) =1 x Pr(word = unfit | y) [2.33]
> Pr(prefix = un- | y) x Pr(word = unfit | y), [2.34]

because the probability of any given word starting with the prefix un- is much less than
one. Naive Bayes will systematically underestimate the true probabilities of conjunctions
of positively correlated features. To use such features, we need learning algorithms that
do not rely on an independence assumption.

The origin of the Naive Bayes independence assumption is the learning objective,
p(xN) 4 (1N)) which requires modeling the probability of the observed text. In clas-
sification problems, we are always given x, and are only interested in predicting the label
y. In this setting, modeling the probability of the text  seems like a difficult and unnec-
essary task. Discriminative learning algorithms avoid this task, and focus directly on the
problem of predicting y.

2.3.1 Perceptron

In Naive Bayes, the weights can be interpreted as parameters of a probabilistic model. But
this model requires an independence assumption that usually does not hold, and limits
our choice of features. Why not forget about probability and learn the weights in an error-
driven way? The perceptron algorithm, shown in Algorithm 3, is one way to do this.

The algorithm is simple: if you make a mistake, increase the weights for features that
are active with the correct label y(*), and decrease the weights for features that are active
with the guessed label . Perceptron is an online learning algorithm, since the classifier
weights change after every example. This is different from Naive Bayes, which is a batch
learning algorithm: it computes statistics over the entire dataset, and then sets the weights
in a single operation. Algorithm 3 is vague about when this online learning procedure
terminates. We will return to this issue shortly.

The perceptron algorithm may seem like an unprincipled heuristic: Naive Bayes has a
solid foundation in probability, but the perceptron is just adding and subtracting constants
from the weights every time there is a mistake. Will this really work? In fact, there is some
nice theory for the perceptron, based on the concept of linear separability. Informally,
a dataset with binary labels (y € {0,1}) is linearly separable if it is possible to draw a
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Algorithm 3 Perceptron learning algorithm

1: procedure PERCEPTRON(z (V) 3y(1:NV))
2 t+<0

3 00 0

4 repeat

5: t+—t+1

6 Select an instance i

7 ¥ < argmax, 0= . f(x® y)

8 if § # y( then

9: o) — gt—=1) f(m(i)7y(i)) _ f(a;(i)73))
10: else
11: 6" «— o(t-1)
12: until tired
13: return %)

hyperplane (a line in many dimensions), such that on each side of the hyperplane, all
instances have the same label. This definition can be formalized and extended to multiple
labels:

Definition 1 (Linear separability). The dataset D = {(x*),y")}N | is linearly separable iff
(if and only if) there exists some weight vector @ and some margin p such that for every instance
(), y®), the inner product of @ and the feature function for the true label, 8 - f(x®, y(®)), is
at least p greater than inner product of @ and the feature function for every other possible label,

30,p>0:Y(x®, 9N eD, 6-fa?,yD)>p+ max - Fx ). [2.35]
y' #yl

Linear separability is important because of the following guarantee: if your data is
linearly separable, then the perceptron algorithm will find a separator (Novikoff, 1962).13
So while the perceptron may seem heuristic, it is guaranteed to succeed, if the learning
problem is easy enough.

How useful is this proof? Minsky and Papert (1969) famously proved that the simple
logical function of exclusive-or is not separable, and that a perceptron is therefore inca-
pable of learning this function. But this is not just an issue for the perceptron: any linear
classification algorithm, including Naive Bayes, will fail on this task. Text classification
problems usually involve high dimensional feature spaces, with thousands or millions of

BTt is also possible to prove an upper bound on the number of training iterations required to find the
separator. Proofs like this are part of the field of machine learning theory (Mobhri et al., 2012).

Jacob Eisenstein. Draft of November 13, 2018.



2.4. LOSS FUNCTIONS AND LARGE-MARGIN CLASSIFICATION 27

features. For these problems, it is very likely that the training data is indeed separable.
And even if the dataset is not separable, it is still possible to place an upper bound on the
number of errors that the perceptron algorithm will make (Freund and Schapire, 1999).

2.3.2 Averaged perceptron

The perceptron iterates over the data repeatedly — until “tired”, as described in Algo-
rithm 3. If the data is linearly separable, the perceptron will eventually find a separator,
and we can stop once all training instances are classified correctly. But if the data is not
linearly separable, the perceptron can thrash between two or more weight settings, never
converging. In this case, how do we know that we can stop training, and how should
we choose the final weights? An effective practical solution is to average the perceptron
weights across all iterations.

This procedure is shown in Algorithm 4. The learning algorithm is nearly identical,
but we also maintain a vector of the sum of the weights, m. At the end of the learning
procedure, we divide this sum by the total number of updates ¢, to compute the average
weights, 8. These average weights are then used for prediction. In the algorithm sketch,
the average is computed from a running sum, m < m + 6. However, this is inefficient,
because it requires |#| operations to update the running sum. When f(x,y) is sparse,
|0| > | f(z,y)| for any individual (x, y). This means that computing the running sum will
be much more expensive than computing of the update to 0 itself, which requires only
2 x |f(z,y)| operations. One of the exercises is to sketch a more efficient algorithm for
computing the averaged weights.

Even if the dataset is not separable, the averaged weights will eventually converge.
One possible stopping criterion is to check the difference between the average weight
vectors after each pass through the data: if the norm of the difference falls below some
predefined threshold, we can stop training. Another stopping criterion is to hold out some
data, and to measure the predictive accuracy on this heldout data. When the accuracy
on the heldout data starts to decrease, the learning algorithm has begun to overfit the
training set. At this point, it is probably best to stop; this stopping criterion is known as
early stopping.

Generalization is the ability to make good predictions on instances that are not in
the training data. Averaging can be proven to improve generalization, by computing an
upper bound on the generalization error (Freund and Schapire, 1999; Collins, 2002).

2.4 Loss functions and large-margin classification
Naive Bayes chooses the weights 8 by maximizing the joint log-likelihood log p (V) 4y(1:N)),

By convention, optimization problems are generally formulated as minimization of a loss
function. The input to a loss function is the vector of weights 8, and the output is a
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Algorithm 4 Averaged perceptron learning algorithm

1: procedure AVG-PERCEPTRON(z(1:N), 4y(1:N)y
2 t+<0

3 0 0

4 repeat

5: t+—t+1

6 Select an instance i

7 § < argmax, 0= . f(x® y)

8 if § # y( then

9: o) — gt=1) f(w(i)7y(i)) _ f(a,(i)73))
10: else
11: 0" «— o(t-1)
12: m «— m+ 6"
13: until tired
14 6+ tm
15: return 6

non-negative number, measuring the performance of the classifier on a training instance.
Formally, the loss £(8; ("), (")) is then a measure of the performance of the weights 6 on
the instance (), y(¥). The goal of learning is to minimize the sum of the losses across all
instances in the training set.

We can trivially reformulate maximum likelihood as a loss function, by defining the
loss function to be the negative log-likelihood:

N
log p(x(1M) 4 (1:N). g) :ZIng(a:(i),y(i);O) [2.36]
i=1
lno(8;21,y") = —logp(z, 4 0) [2.37]
N
0 =argmin > Ll (0; 2, y® 2.38
g@ ; ni ( y) [ ]
N . .
= argmax Z log p(a:(z), y; 0). [2.39]
o =1

The problem of minimizing /y; is thus identical to maximume-likelihood estimation.

Loss functions provide a general framework for comparing learning objectives. For
example, an alternative loss function is the zero-one loss,
0, y¥ =argmax, 0 f(z",y)

[2.40]

lo1(0; 29 4y =
0-1( y) 1, otherwise
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The zero-one loss is zero if the instance is correctly classified, and one otherwise. The
sum of zero-one losses is proportional to the error rate of the classifier on the training
data. Since a low error rate is often the ultimate goal of classification, this may seem
ideal. But the zero-one loss has several problems. One is that it is non-convex,'* which
means that there is no guarantee that gradient-based optimization will be effective. A
more serious problem is that the derivatives are useless: the partial derivative with respect
to any parameter is zero everywhere, except at the points where 8- f (), y) = 8- f(x¥), )
for some y. At those points, the loss is discontinuous, and the derivative is undefined.

The perceptron optimizes a loss function that has better properties for learning:

gPERCEPTRON(O; m(i)7 y(i)) = 1216333(0 : f(m(i)vy) -6 f(w(i)a y(i))7 [2.41]

When ¢ = y("), the loss is zero; otherwise, it increases linearly with the gap between the
score for the predicted label § and the score for the true label @), Plotting this loss against
the input max,cy 0 - f(z,y) — 0 - f(zV,y) gives a hinge shape, motivating the name
hinge loss.

To see why this is the loss function optimized by the perceptron, take the derivative
with respect to 0,

) L . S

%EPERCEPTRON(B; ‘E(Z)yy(l)) = f(a:(l),y) - f(a:( )7 y( ))- [2.42]
At each instance, the perceptron algorithm takes a step of magnitude one in the opposite
direction of this gradient, Vg/prrceprron = %EPERCEPTRON(G; ) yD). As we will see in
§ 2.6, this is an example of the optimization algorithm stochastic gradient descent, applied
to the objective in Equation 2.41.

*Breaking ties with subgradient descent !> Careful readers will notice the tacit assump-
tion that there is a unique y that maximizes 6 - Ff(x®,y). What if there are two or more
labels that maximize this function? Consider binary classification: if the maximizer is y,
then the gradient is zero, and so is the perceptron update; if the maximizer is § # y®,
then the update is the difference f(z®,y®) — f(z, ). The underlying issue is that the
perceptron loss is not smooth, because the first derivative has a discontinuity at the hinge
point, where the score for the true label y® is equal to the score for some other label . At
this point, there is no unique gradient; rather, there is a set of subgradients. A vector v is

YA function f is convex iff af (z;)+(1—a)f(z;) > f(az;+(1—a)z;), forall a € [0, 1] and for all z; and x;
on the domain of the function. In words, any weighted average of the output of f applied to any two points is
larger than the output of f when applied to the weighted average of the same two points. Convexity implies
that any local minimum is also a global minimum, and there are many effective techniques for optimizing
convex functions (Boyd and Vandenberghe, 2004). See Appendix B for a brief review.

15 Throughout this text, advanced topics will be marked with an asterisk.
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a subgradient of the function g at u iff g(u) — g(up) > v - (u — ug) for all u. Graphically,
this defines the set of hyperplanes that include g(u() and do not intersect g at any other
point. As we approach the hinge point from the left, the gradientis f(x,y)— f(x,y); as we
approach from the right, the gradient is 0. At the hinge point, the subgradients include all
vectors that are bounded by these two extremes. In subgradient descent, any subgradient
can be used (Bertsekas, 2012). Since both 0 and f(x,y) — f(«,y) are subgradients at the
hinge point, either one can be used in the perceptron update. This means that if multiple
labels maximize 6 - f(x"), y), any of them can be used in the perceptron update.

Perceptron versus Naive Bayes The perceptron loss function has some pros and cons
with respect to the negative log-likelihood loss implied by Naive Bayes.

e Both ¢y and {pgrceprroN are convex, making them relatively easy to optimize. How-
ever, {ys can be optimized in closed form, while {pgrcrprron requires iterating over
the dataset multiple times.

e /\g can suffer infinite loss on a single example, since the logarithm of zero probability
is negative infinity. Naive Bayes will therefore overemphasize some examples, and
underemphasize others.

e The Naive Bayes classifier assumes that the observed features are conditionally in-
dependent, given the label, and the performance of the classifier depends on the
extent to which this assumption holds. The perceptron requires no such assump-
tion.

o (prrerprron treats all correct answers equally. Even if 8 only gives the correct answer
by a tiny margin, the loss is still zero.

2.4.1 Online large margin classification

This last comment suggests a potential problem with the perceptron. Suppose a test ex-
ample is very close to a training example, but not identical. If the classifier only gets the
correct answer on the training example by a small amount, then it may give a different
answer on the nearby test instance. To formalize this intuition, define the margin as,

1(0;29,y") =0 f@,y) — max - f(=V,y). [2.43]
Y7y

The margin represents the difference between the score for the correct label 3, and
the score for the highest-scoring incorrect label. The intuition behind large margin clas-
sification is that it is not enough to label the training data correctly — the correct label
should be separated from other labels by a comfortable margin. This idea can be encoded
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3
=== 0/1 loss
= margin loss
2 7 N _
N logistic loss
2] * N
3
T
R
N,
0 1 .
-2 -1 0 1 2

0 f(x®,y®)—0. f(x?,g)
Figure 2.2: Margin, zero-one, and logistic loss functions.

into a loss function,

o (020, y0) > 1
‘ PRSORNOND A . - ’ 244
Marcin (0 2, y) 1—~(8;2%,4@), otherwise 24
_ (1 —(6; m(z‘)?y(i))) : [2.45]
+

where (z)4 = max(0,z). The loss is zero if there is a margin of at least 1 between the
score for the true label and the best-scoring alternative 3. This is almost identical to the
perceptron loss, but the hinge point is shifted to the right, as shown in Figure 2.2. The
margin loss is a convex upper bound on the zero-one loss.

The margin loss can be minimized using an online learning rule that is similar to per-
ceptron. We will call this learning rule the online support vector machine, for reasons
that will be discussed in the derivation. Let us first generalize the notion of a classifica-
tion error with a cost function ¢(y(*), 3). We will focus on the simple cost function,

) @) £ 4
C(y(”,y)z{l’ yr#Y [2.46]

0, otherwise,

but it is possible to design specialized cost functions that assign heavier penalties to espe-
cially undesirable errors (Tsochantaridis et al., 2004). This idea is revisited in chapter 7.

Using the cost function, we can now define the online support vector machine as the

Under contract with MIT Press, shared under CC-BY-NC-ND license.



32 CHAPTER 2. LINEAR TEXT CLASSIFICATION

following classification rule:

g =argmax @ - f(z,y) + c(y?,y) [2.47]
yey
00 (1 -0 + fa.y) - f(.5) [2.48]

This update is similar in form to the perceptron, with two key differences.

e Rather than selecting the label y that maximizes the score of the current classifi-
cation model, the argmax searches for labels that are both strong, as measured by
6 - f(z,y), and wrong, as measured by ¢(y*,y). This maximization is known as
cost-augmented decoding, because it augments the maximization objective to favor
high-cost labels. If the highest-scoring label is y = y(, then the margin loss for
this instance is zero, and no update is needed. If not, then an update is required to
reduce the margin loss — even if the current model classifies the instance correctly.
Cost augmentation is only done while learning; it is not applied when making pre-
dictions on unseen data.

e The previous weights (*~1) are scaled by (1 — \), with A € (0, 1). The effect of this
term is to cause the weights to “decay” back towards zero. In the support vector
machine, this term arises from the minimization of a specific form of the margin, as
described below. However, it can also be viewed as a form of regularization, which
can help to prevent overfitting (see § 2.5.1). In this sense, it plays a role that is similar
to smoothing in Naive Bayes (see § 2.2.4).

2.4.2 *Derivation of the online support vector machine

The derivation of the online support vector machine is somewhat involved, but gives
further intuition about why the method works. Begin by returning the idea of linear sep-
arability (Definition 1): if a dataset is linearly separable, then there is some hyperplane 8
that correctly classifies all training instances with margin p. This margin can be increased
to any desired value by multiplying the weights by a constant.

Now, for any datapoint (z(), y(?)), the geometric distance to the separating hyper-

. RO . . :
plane is given by 7(0’%7”’;/), where the denominator is the norm of the weights, ||0||2 =

\/ 2 (9]2-. The geometric distance is sometimes called the geometric margin, in contrast to

the functional margin +(8; =¥, y()). Both are shown in Figure 2.3. The geometric margin
is a good measure of the robustness of the separator: if the functional margin is large, but
the norm |||z is also large, then a small change in () could cause it to be misclassified.
We therefore seek to maximize the minimum geometric margin across the dataset, subject
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'fj geometric

\ margin
functional @
margin

Figure 2.3: Functional and geometric margins for a binary classification problem. All
separators that satisfy the margin constraint are shown. The separator with the largest
geometric margin is shown in bold.

to the constraint that the margin loss is always zero:

v(0; 2D, y())

max min
] i=1,2,...N 1012
st y(6;2@ 4Dy >1, Vi [2.49]

This is a constrained optimization problem, where the second line describes constraints
on the space of possible solutions 8. In this case, the constraint is that the functional
margin always be at least one, and the objective is that the minimum geometric margin
be as large as possible.

Constrained optimization is reviewed in Appendix B. In this case, further manipula-
tion yields an unconstrained optimization problem. First, note that the norm ||0||2 scales
linearly: ||aB||2 = a||@||2. Furthermore, the functional margin -~ is a linear function of 6,
so that v(a8, 2 y¥)) = ay(8,2 y)). As a result, any scaling factor on 8 will cancel in
the numerator and denominator of the geometric margin. If the data is linearly separable
at any p > 0, it is always possible to rescale the functional margin to 1 by multiplying 6
by a scalar constant. We therefore need only minimize the denominator ||0||2, subject to
the constraint on the functional margin. The minimizer of ||6|| is also the minimizer of
3116113 = 13" 62, which is easier to work with. This yields a simpler optimization prob-
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lem:
min.  2[|0]2
0 o 17112
st 4(6:;2@ 4Dy >1, v, [2.50]

This problem is a quadratic program: the objective is a quadratic function of the pa-
rameters, and the constraints are all linear inequalities. One solution to this problem is
to incorporate the constraints through Lagrange multipliers o; > 0,7 = 1,2,..., N. The
instances for which «; > 0 are called support vectors; other instances are irrelevant to the
classification boundary. This motivates the name support vector machine.

Thus far we have assumed linear separability, but many datasets of interest are not
linearly separable. In this case, there is no 6 that satisfies the margin constraint. To add
more flexibility, we can introduce a set of slack variables & > 0. Instead of requiring that
the functional margin be greater than or equal to one, we require that it be greater than or
equal to 1 — &;. Ideally there would not be any slack, so the slack variables are penalized
in the objective function:

N
. 1 9
wmin 2||0|2+C;€i
s.t. v(O; 2D,y D)+ &> 1, Vi

&>0, V. [2.51]

The hyperparameter C' controls the tradeoff between violations of the margin con-
straint and the preference for a low norm of 8. As C' — oo, slack is infinitely expensive,
and there is only a solution if the data is separable. As C' — 0, slack becomes free, and
there is a trivial solution at @ = 0. Thus, C plays a similar role to the smoothing parame-
ter in Naive Bayes (§ 2.2.4), trading off between a close fit to the training data and better
generalization. Like the smoothing parameter of Naive Bayes, C' must be set by the user,
typically by maximizing performance on a heldout development set.

To solve the constrained optimization problem defined in Equation 2.51, we can first
solve for the slack variables,

&> (1—(0;20,y)),. [2.52]
The inequality is tight: the optimal solution is to make the slack variables as small as
possible, while still satisfying the constraints (Ratliff et al., 2007; Smith, 2011). By plugging

in the minimum slack variables back into Equation 2.51, the problem can be transformed
into the unconstrained optimization,

N
A D) G
min  Z16]3 + (1 —v(6;2,yD)), [2.53]
=1
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where each &; has been substituted by the right-hand side of Equation 2.52, and the factor
of C on the slack variables has been replaced by an equivalent factor of A = % on the
norm of the weights.

Equation 2.53 can be rewritten by expanding the margin,

N
: A 7 7 7 7
min 20113 +g <m.;< (0 £@D,9) +cly,y)) =0 F(2,y >>>+, [2.54]

where c(y, y() is the cost function defined in Equation 2.46. We can now differentiate
with respect to the weights,

N
VoLsyw =0+ Y £, ) — f(x@,yD), [2.55]
i=1

where Lgyy refers to minimization objective in Equation 2.54 and y = argmax,cy 0 -
F(x9 y) + c(y?,y). The online support vector machine update arises from the appli-
cation of stochastic gradient descent (described in § 2.6.2) to this gradient.

2.5 Logistic regression

Thus far, we have seen two broad classes of learning algorithms. Naive Bayes is a prob-
abilistic method, where learning is equivalent to estimating a joint probability distribu-
tion. The perceptron and support vector machine are discriminative, error-driven algo-
rithms: the learning objective is closely related to the number of errors on the training
data. Probabilistic and error-driven approaches each have advantages: probability makes
it possible to quantify uncertainty about the predicted labels, but the probability model of
Naive Bayes makes unrealistic independence assumptions that limit the features that can
be used.

Logistic regression combines advantages of discriminative and probabilistic classi-
fiers. Unlike Naive Bayes, which starts from the joint probability p y ,-, logistic regression
defines the desired conditional probability Pyx directly. Think of @ - f(x,y) as a scoring
function for the compatibility of the base features  and the label y. To convert this score
into a probability, we first exponentiate, obtaining exp (8 - f(x,y)), which is guaranteed
to be non-negative. Next, we normalize, dividing over all possible labels ¢ € Y. The
resulting conditional probability is defined as,

eXp (0 i f(m7y))
yeyexp (6 f(z.y))

py | x;0) B [2.56]

Under contract with MIT Press, shared under CC-BY-NC-ND license.



36 CHAPTER 2. LINEAR TEXT CLASSIFICATION

Given a dataset D = {(z(®,y")} ¥, the weights 6 are estimated by maximum condi-
tional likelihood,

N
log p(yN) | &N, g) :ZIng(y(i) | 2(): 9) [2.57]
i=1

N
= ZO (@, yD) —log Z exp (0 : f(m(i),y’)) . [2.58]
i=1

y'ey

The final line is obtained by plugging in Equation 2.56 and taking the logarithm.!® Inside
the sum, we have the (additive inverse of the) logistic loss,

lrocrec (82, y) = =0 - f(@,y)) +1og > exp(0- f(z,y))  [2.59]
y'ey
The logistic loss is shown in Figure 2.2 on page 31. A key difference from the zero-one
and hinge losses is that logistic loss is never zero. This means that the objective function
can always be improved by assigning higher confidence to the correct label.

2,51 Regularization

As with the support vector machine, better generalization can be obtained by penalizing
the norm of 6. This is done by adding a multiple of the squared norm %||6||3 to the
minimization objective. This is called Ly regularization, because ||6||3 is the squared L
norm of the vector 8. Regularization forces the estimator to trade off performance on the
training data against the norm of the weights, and this can help to prevent overfitting.
Consider what would happen to the unregularized weight for a base feature j that is
active in only one instance z(¥): the conditional log-likelihood could always be improved
by increasing the weight for this feature, so that 6 ; )y — coand 0, ;. )y — —oo, where

(4,y) is the index of feature associated with xg»l) and label y in f(x®, y).

In § 2.2.4 (footnote 11), we saw that smoothing the probabilities of a Naive Bayes clas-
sifier can be justified as a form of maximum a posteriori estimation, in which the param-
eters of the classifier are themselves random variables, drawn from a prior distribution.
The same justification applies to Ly regularization. In this case, the prior is a zero-mean
Gaussian on each term of 8. The log-likelihood under a zero-mean Gaussian is,

1
log N (0;;0,02) oc — ﬁeg, [2.60]
1

so that the regularization weight ) is equal to the inverse variance of the prior, A = .

The log-sum-exp term is a common pattern in machine learning. It is numerically unstable, because it
will underflow if the inner product is small, and overflow if the inner product is large. Scientific computing
libraries usually contain special functions for computing 1ogsumexp, but with some thought, you should be
able to see how to create an implementation that is numerically stable.
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2.5.2 Gradients

Logistic loss is minimized by optimization along the gradient. Specific algorithms are de-
scribed in the next section, but first let’s compute the gradient with respect to the logistic
loss of a single example:

lrocric = — 0 - F(@,y@) +log Z exp (0 . f(w(i’), y’)) [2.61]
y' ey
= Fa,y) + i < 2 e (0 5@ 0)) x £,
00 ey exp (8- f(xz®,y") <y
[2.62]
_ (Z eXp 0 f(m(l )) (2) / 2 63
Y % s en (6 Faw.y) <) [2.63]
= —f@D,y)+ Y py |27;0) x f(z,y) [2.64]
y' ey

=— F(z9,yD) + By x[f(z,y)]. [2.65]

The final step employs the definition of a conditional expectation (§ A.5). The gradient of
the logistic loss is equal to the difference between the expected counts under the current
model, Ey | x[f (), )], and the observed feature counts f(z¥, y(*)). When these two
vectors are equal for a single instance, there is nothing more to learn from it; when they
are equal in sum over the entire dataset, there is nothing more to learn from the dataset as
a whole. The gradient of the hinge loss is nearly identical, but it involves the features of
the predicted label under the current model, f(x(*), ), rather than the expected features
By x| f(x® )] under the conditional distribution p(y | «; ).

The regularizer contributes A\@ to the overall gradient:

N
A ) ) .
Locres =5 1013 = D (9 f(@,y) —log Y exp- f(oc“),y’)) [2.66]

i=1 y'ey

=

VoLiocres =20 — Y (F(@,y) = Bya[f(@?,y)]) [2.67]
=1

2.6 Optimization

Each of the classification algorithms in this chapter can be viewed as an optimization
problem:

lzN))

e In Naive Bayes, the objective is the joint likelihood log p(x(), y( . Maximum

likelihood estimation yields a closed-form solution for 6.
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¢ In the support vector machine, the objective is the regularized margin loss,

N
A . . o
Lsym = §||9H§ + E (r;1€a3>}<(0 F@D, ) + ey, y) -0 FD,y D)), [2.68]
i=1

There is no closed-form solution, but the objective is convex. The perceptron algo-
rithm minimizes a similar objective.

e In logistic regression, the objective is the regularized negative log-likelihood,

N

165 =" [0 £@?.y) —log Y exp (0 F(@y)) | [269]

i=1 yeY

A
LLOGREG = 5

Again, there is no closed-form solution, but the objective is convex.

These learning algorithms are distinguished by what is being optimized, rather than
how the optimal weights are found. This decomposition is an essential feature of con-
temporary machine learning. The domain expert’s job is to design an objective function
— or more generally, a model of the problem. If the model has certain characteristics,
then generic optimization algorithms can be used to find the solution. In particular, if an
objective function is differentiable, then gradient-based optimization can be employed;
if it is also convex, then gradient-based optimization is guaranteed to find the globally
optimal solution. The support vector machine and logistic regression have both of these
properties, and so are amenable to generic convex optimization techniques (Boyd and
Vandenberghe, 2004).

2.6.1 Batch optimization

In batch optimization, each update to the weights is based on a computation involving
the entire dataset. One such algorithm is gradient descent, which iteratively updates the
weights,

9D g _ Oy, L, [2.70]

where VgL is the gradient computed over the entire training set, and 7*) is the learning
rate at iteration ¢. If the objective L is a convex function of 6, then this procedure is

guaranteed to terminate at the global optimum, for appropriate schedule of learning rates,
(t) 17
mn.

“Convergence proofs typically require the learning rate to satisfy the following conditions:
Doy n® = 0o and Z;’il(n“))Q < oo (Bottou et al., 2016). These properties are satisfied by any learning
rate schedule 7" = 79t~ for a € [1,2].
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In practice, gradient descent can be slow to converge, as the gradient can become
infinitesimally small. Faster convergence can be obtained by second-order Newton opti-
mization, which incorporates the inverse of the Hessian matrix,

02L
H;j =
77 96,00,

[2.71]

The size of the Hessian matrix is quadratic in the number of features. In the bag-of-words
representation, this is usually too big to store, let alone invert. Quasi-Network optimiza-
tion techniques maintain a low-rank approximation to the inverse of the Hessian matrix.
Such techniques usually converge more quickly than gradient descent, while remaining
computationally tractable even for large feature sets. A popular quasi-Newton algorithm
is L-BFGS (Liu and Nocedal, 1989), which is implemented in many scientific computing
environments, such as SCIPY and MATLAB.

For any gradient-based technique, the user must set the learning rates 7). While con-
vergence proofs usually employ a decreasing learning rate, in practice, it is common to fix
7® to a small constant, like 10~3. The specific constant can be chosen by experimentation,
although there is research on determining the learning rate automatically (Schaul et al.,
2013; Wu et al., 2018).

2.6.2 Online optimization

Batch optimization computes the objective on the entire training set before making an up-
date. This may be inefficient, because at early stages of training, a small number of train-
ing examples could point the learner in the correct direction. Online learning algorithms
make updates to the weights while iterating through the training data. The theoretical
basis for this approach is a stochastic approximation to the true objective function,

N
> 0(6;39,y0) ~ N x £(6; 29, y1)), (@D, y0) ~ {(@D, gy, [272]
=1

where the instance (z(), y(/)) is sampled at random from the full dataset.

In stochastic gradient descent, the approximate gradient is computed by randomly
sampling a single instance, and an update is made immediately. This is similar to the
perceptron algorithm, which also updates the weights one instance at a time. In mini-
batch stochastic gradient descent, the gradient is computed over a small set of instances.
A typical approach is to set the minibatch size so that the entire batch fits in memory on a
graphics processing unit (GPU; Neubig et al., 2017). It is then possible to speed up learn-
ing by parallelizing the computation of the gradient over each instance in the minibatch.

Algorithm 5 offers a generalized view of gradient descent. In standard gradient de-
scent, the batcher returns a single batch with all the instances. In stochastic gradient de-

Under contract with MIT Press, shared under CC-BY-NC-ND license.



40 CHAPTER 2. LINEAR TEXT CLASSIFICATION

Algorithm 5 Generalized gradient descent. The function BATCHER partitions the train-
ing set into B batches such that each instance appears in exactly one batch. In gradient
descent, B = 1; in stochastic gradient descent, B = N; in minibatch stochastic gradient
descent, 1 < B < N.

1: procedure GRADIENT-DESCENT(z(5N) | g (LN) [, 5(1:00) BATCHER, Tinax)
2 60

3 t+0

4 repeat

5: (b1, 632 .. bB)) < BATCHER(N)

6 forn € {1,2,...,B} do

7 t—t+1

8 0(0) U= _ 7oL (90D, g0 057.0) 40" 057,y
9 if Converged(6(1:%-1)) then

10: return (%)

11: until ¢ > Trax

12: return (")

scent, it returns N batches with one instance each. In mini-batch settings, the batcher
returns B minibatches, 1 < B < N.

There are many other techniques for online learning, and research in this area is on-
going (Bottou et al., 2016). Some algorithms use an adaptive learning rate, which can be
different for every feature (Duchi et al., 2011). Features that occur frequently are likely
to be updated frequently, so it is best to use a small learning rate; rare features will be
updated infrequently, so it is better to take larger steps. The AdaGrad (adaptive gradient)
algorithm achieves this behavior by storing the sum of the squares of the gradients for
each feature, and rescaling the learning rate by its inverse:

g: =VoL(0W; () y()) [2.73]
n®

S
Zt 5 9tj>
v=19%;

In most cases, the number of active features for any instance is much smaller than the
number of weights. If so, the computation cost of online optimization will be dominated
by the update from the regularization term, A@. The solution is to be “lazy”, updating
each 6; only as it is used. To implement lazy updating, store an additional parameter 7;,
which is the iteration at which 6; was last updated. If §; is needed at time ¢, the ¢t — 7
regularization updates can be performed all at once. This strategy is described in detail
by Kummerfeld et al. (2015).

0§t+1) <—0§” _ [2.74]

where j iterates over features in f(x,y).
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2.7 *Additional topics in classification

This section presents some additional topics in classification that are particularly relevant
for natural language processing, especially for understanding the research literature.

2.7.1 Feature selection by regularization

In logistic regression and large-margin classification, generalization can be improved by
regularizing the weights towards 0, using the L, norm. But rather than encouraging
weights to be small, it might be better for the model to be sparse: it should assign weights
of exactly zero to most features, and only assign non-zero weights to features that are
clearly necessary. This idea can be formalized by the Lo norm, Lo = [[8]|o = 3,6 (8; # 0),
which applies a constant penalty for each non-zero weight. This norm can be thought
of as a form of feature selection: optimizing the Ly-regularized conditional likelihood is
equivalent to trading off the log-likelihood against the number of active features. Reduc-
ing the number of active features is desirable because the resulting model will be fast,
low-memory, and should generalize well, since irrelevant features will be pruned away.
Unfortunately, the Ly norm is non-convex and non-differentiable. Optimization under L
regularization is NP-hard, meaning that it can be solved efficiently only if P=NP (Ge et al.,
2011).

A useful alternative is the L1 norm, which is equal to the sum of the absolute values
of the weights, [|6||1 = >_, |0;|. The L; norm is convex, and can be used as an approxima-
tion to Ly (Tibshirani, 1996). Conveniently, the L; norm also performs feature selection,
by driving many of the coefficients to zero; it is therefore known as a sparsity inducing
regularizer. The L; norm does not have a gradient at f; = 0, so we must instead optimize
the Li-regularized objective using subgradient methods. The associated stochastic sub-
gradient descent algorithms are only somewhat more complex than conventional SGD;
Sra et al. (2012) survey approaches for estimation under L; and other regularizers.

Gao et al. (2007) compare L; and L, regularization on a suite of NLP problems, finding
that L; regularization generally gives similar accuracy to Lo regularization, but that L
regularization produces models that are between ten and fifty times smaller, because more
than 90% of the feature weights are set to zero.

2.7.2 Other views of logistic regression

In binary classification, we can dispense with the feature function, and choose y based on
the inner product of 6 - . The conditional probability py v is obtained by passing this
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inner product through a logistic function,

» exp(a) -
o(a) 1 expla) (1 +exp(—a))™? [2.75]
p(y | z:6) =0(0 - ). [2.76]

This is the origin of the name “logistic regression.” Logistic regression can be viewed as
part of a larger family of generalized linear models (GLMs), in which various other link
functions convert between the inner product 8 -  and the parameter of a conditional
probability distribution.

Logistic regression and related models are sometimes referred to as log-linear, be-
cause the log-probability is a linear function of the features. But in the early NLP liter-
ature, logistic regression was often called maximum entropy classification (Berger et al.,
1996). This name refers to an alternative formulation, in which the goal is to find the max-
imum entropy probability function that satisfies moment-matching constraints. These
constraints specify that the empirical counts of each feature should match the expected
counts under the induced probability distribution py v 4,

ij iyl ZZpym)efJ( D), Vi [2.77]

i=1 yey

The moment-matching constraint is satisfied exactly when the derivative of the condi-
tional log-likelihood function (Equation 2.65) is equal to zero. However, the constraint
can be met by many values of 8, so which should we choose?

The entropy of the conditional probability distribution py y is,

H(py)x) == D Px(®) Y Pyix(y | @) logpyx(y | @), [2.78]

reX yey

where X is the set of all possible feature vectors, and p y (x) is the probability of observing
the base features x. The distribution p . is unknown, but it can be estimated by summing
over all the instances in the training set,

(Py|X szpyp( y|:c )IOgPy\X(Z”w ) [2.79]

i=1 ye)

If the entropy is large, the likelihood function is smooth across possible values of y;
if it is small, the likelihood function is sharply peaked at some preferred value; in the
limiting case, the entropy is zero if p(y | ) = 1 for some y. The maximum-entropy cri-
terion chooses to make the weakest commitments possible, while satisfying the moment-
matching constraints from Equation 2.77. The solution to this constrained optimization
problem is identical to the maximum conditional likelihood (logistic-loss) formulation
that was presented in § 2.5.
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2.8 Summary of learning algorithms

It is natural to ask which learning algorithm is best, but the answer depends on what
characteristics are important to the problem you are trying to solve.

Naive Bayes Pros: easy to implement; estimation is fast, requiring only a single pass over
the data; assigns probabilities to predicted labels; controls overfitting with smooth-
ing parameter. Cons: often has poor accuracy, especially with correlated features.

Perceptron Pros: easy to implement; online; error-driven learning means that accuracy
is typically high, especially after averaging. Cons: not probabilistic; hard to know
when to stop learning; lack of margin can lead to overfitting.

Support vector machine Pros: optimizes an error-based metric, usually resulting in high
accuracy; overfitting is controlled by a regularization parameter. Cons: not proba-
bilistic.

Logistic regression Pros: error-driven and probabilistic; overfitting is controlled by a reg-
ularization parameter. Cons: batch learning requires black-box optimization; logistic
loss can “overtrain” on correctly labeled examples.

One of the main distinctions is whether the learning algorithm offers a probability
over labels. This is useful in modular architectures, where the output of one classifier
is the input for some other system. In cases where probability is not necessary, the sup-
port vector machine is usually the right choice, since it is no more difficult to implement
than the perceptron, and is often more accurate. When probability is necessary, logistic
regression is usually more accurate than Naive Bayes.

Additional resources

A machine learning textbook will offer more classifiers and more details (e.g., Murphy,
2012), although the notation will differ slightly from what is typical in natural language
processing. Probabilistic methods are surveyed by Hastie et al. (2009), and Mohri et al.
(2012) emphasize theoretical considerations. Bottou et al. (2016) surveys the rapidly mov-
ing field of online learning, and Kummerfeld et al. (2015) empirically review several opti-
mization algorithms for large-margin learning. The python toolkit SCIKIT-LEARN includes
implementations of all of the algorithms described in this chapter (Pedregosa et al., 2011).

Appendix B describes an alternative large-margin classifier, called passive-aggressive.
Passive-aggressive is an online learner that seeks to make the smallest update that satisfies
the margin constraint at the current instance. It is closely related to MIRA, which was used
widely in NLP in the 2000s (Crammer and Singer, 2003).
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Exercises

There will be exercises at the end of each chapter. In this chapter, the exercises are mostly
mathematical, matching the subject material. In other chapters, the exercises will empha-
size linguistics or programming.

1. Let x be a bag-of-words vector such that Z};l xj = 1. Verify that the multinomial
probability p ..(x; @), as defined in Equation 2.12, is identical to the probability of
the same document under a categorical distribution, p_,,(w; ¢).

2. Suppose you have a single feature z, with the following conditional distribution:

«, X=0,Y=0
l—a, X=1,Y=0
1-8, X=0Y=1
B, X=1,Y=1.

plz|y) = [2.80]

Further suppose that the prior is uniform, Pr(Y = 0) = Pr(Y = 1) = 3, and that
both o > % and 8 > % Given a Naive Bayes classifier with accurate parameters,
what is the probability of making an error?

3. Derive the maximum-likelihood estimate for the parameter ;1 in Naive Bayes.

4. The classification models in the text have a vector of weights for each possible label.
While this is notationally convenient, it is overdetermined: for any linear classifier
that can be obtained with K x V weights, an equivalent classifier can be constructed
using (K — 1) x V weights.

a) Describe how to construct this classifier. Specifically, if given a set of weights
0 and a feature function f(x,y), explain how to construct alternative weights
and feature function 8’ and f’(x,y), such that,

Vy,y' € V,0- f(x,y)—0- flx,y)=0"- f'(x,y)— 0" f(x,y). [281]

b) Explain how your construction justifies the well-known alternative form for
binary logistic regression, Pr(Y =1 | «;0) = m = o(@' - x), where o
is the sigmoid function.

5. Suppose you have two labeled datasets D; and D, with the same features and la-
bels.

e Let Y be the unregularized logistic regression (LR) coefficients from training
on dataset D;.
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o Let 0 Dbe the unregularized LR coefficients (same model) from training on
dataset Ds.

e Let 8" be the unregularized LR coefficients from training on the combined
dataset D; U Ds.

Under these conditions, prove that for any feature j,
6: >min(6}",6\%)
* 1) p2
07 <max(0,;,0,7).

J 7

6. Let 0 be the solution to an unregularized logistic regression problem, and let 8* be
the solution to the same problem, with L, regularization. Prove that ||6*|3 < ||6]|3.

7. Asnoted in the discussion of averaged perceptron in § 2.3.2, the computation of the
running sum m < m + 6 is unnecessarily expensive, requiring K x V operations.
Give an alternative way to compute the averaged weights 8, with complexity that is
independent of V and linear in the sum of feature sizes > | | £(z®, y)|.

8. Consider a dataset that is comprised of two identical instances z(!) = z(® with
distinct labels y(!) # 3(2). Assume all features are binary, z; € {0, 1} for all j.

Now suppose that the averaged perceptron always trains on the instance (x'®), (),
where i(t) = 2 — (¢ mod 2), which is 1 when the training iteration ¢ is odd, and 2
when ¢ is even. Further suppose that learning terminates under the following con-

dition:
1 w_ 1 (t-1)
€> m]ax . % Gj 73 Et Hj ) [2.82]

In words, the algorithm stops when the largest change in the averaged weights is
less than or equal to e. Compute the number of iterations before the averaged per-
ceptron terminates.

9. Prove that the margin loss is convex in 6. Use this definition of the margin loss:
L(0) = —0 - f(x,y") + max 0 f(x,y) +c(y".y), [2.83]
where y* is the gold label. As a reminder, a function f is convex iff,
flazy + (1 — a)ze) < af(z1) + (1 — a) f(x2), [2.84]
for any z1, 2 and a € [0, 1].
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10. If a function f is m-strongly convex, then for some m > 0, the following inequality
holds for all  and 2’ on the domain of the function:

@) < @)+ (Vaf) - (¢ —2) + T’ - al 3 [2.85]

Let f(x) = L(6W), representing the loss of the classifier at iteration ¢ of gradient
descent; let f(z') = L(O®*)). Assuming the loss function is m-convex, prove that
L(OD) < L(61) for an appropriate constant learning rate 1, which will depend
on m. Explain why this implies that gradient descent converges when applied to an
m-strongly convex loss function with a unique minimum.
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Chapter 3

Nonlinear classification

Linear classification may seem like all we need for natural language processing. The bag-
of-words representation is inherently high dimensional, and the number of features is
often larger than the number of labeled training instances. This means that it is usually
possible to find a linear classifier that perfectly fits the training data, or even to fit any ar-
bitrary labeling of the training instances! Moving to nonlinear classification may therefore
only increase the risk of overfitting. Furthermore, for many tasks, lexical features (words)
are meaningful in isolation, and can offer independent evidence about the instance label
— unlike computer vision, where individual pixels are rarely informative, and must be
evaluated holistically to make sense of an image. For these reasons, natural language
processing has historically focused on linear classification.

But in recent years, nonlinear classifiers have swept through natural language pro-
cessing, and are now the default approach for many tasks (Manning, 2015). There are at
least three reasons for this change.

e There have been rapid advances in deep learning, a family of nonlinear meth-
ods that learn complex functions of the input through multiple layers of compu-
tation (Goodfellow et al., 2016).

e Deep learning facilitates the incorporation of word embeddings, which are dense
vector representations of words. Word embeddings can be learned from large amounts
of unlabeled data, and enable generalization to words that do not appear in the an-
notated training data (word embeddings are discussed in detail in chapter 14).

e While CPU speeds have plateaued, there have been rapid advances in specialized
hardware called graphics processing units (GPUs), which have become faster, cheaper,
and easier to program. Many deep learning models can be implemented efficiently
on GPUs, offering substantial performance improvements over CPU-based comput-

mng.

47



48 CHAPTER 3. NONLINEAR CLASSIFICATION

This chapter focuses on neural networks, which are the dominant approach for non-
linear classification in natural language processing today.! Historically, a few other non-
linear learning methods have been applied to language data.

e Kernel methods are generalizations of the nearest-neighbor classification rule, which
classifies each instance by the label of the most similar example in the training set.
The application of the kernel support vector machine to information extraction is
described in chapter 17.

e Decision trees classify instances by checking a set of conditions. Scaling decision
trees to bag-of-words inputs is difficult, but decision trees have been successful in
problems such as coreference resolution (chapter 15), where more compact feature
sets can be constructed (Soon et al., 2001).

¢ Boosting and related ensemble methods work by combining the predictions of sev-
eral “weak” classifiers, each of which may consider only a small subset of features.
Boosting has been successfully applied to text classification (Schapire and Singer,
2000) and syntactic analysis (Abney et al., 1999), and remains one of the most suc-
cessful methods on machine learning competition sites such as Kaggle (Chen and
Guestrin, 2016).

Hastie et al. (2009) provide an excellent overview of these techniques.

3.1 Feedforward neural networks

Consider the problem of building a classifier for movie reviews. The goal is to predict a
label y € {GOOD, BAD, OKAY} from a representation of the text of each document, . But
what makes a good movie? The story, acting, cinematography, editing, soundtrack, and
so on. Now suppose the training set contains labels for each of these additional features,
z = [21,22,...,2K.] . With a training set of such information, we could build a two-step
classifier:

1. Use the text x to predict the features z. Specifically, train a logistic regression clas-
sifier to compute p(z; | ), foreach k € {1,2,..., K, }.

2. Use the features z to predict the label y. Again, train a logistic regression classifier
to compute p(y | z). On test data, z is unknown, so we will use the probabilities
p(z | ) from the first layer as the features.

This setup is shown in Figure 3.1, which describes the proposed classifier in a computa-
tion graph: the text features x are connected to the middle layer z, which is connected to
the label y.

T will use “deep learning” and “neural networks” interchangeably.
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Figure 3.1: A feedforward neural network. Shaded circles indicate observed features,
usually words; squares indicate nodes in the computation graph, which are computed
from the information carried over the incoming arrows.

If we assume that each zj, is binary, z;, € {0,1}, then the probability p(zj | «) can be
modeled using binary logistic regression:

Pr(z = 1| 2;0072)) = (677 . ) = (1 + exp(—0" 7 . 2)) 1, [3.1]

where ¢ is the sigmoid function (shown in Figure 3.2), and the matrix O—2) ¢ RE=xV jg
constructed by stacking the weight vectors for each z,

@2 = (\*7%) glr=2)  glr7a)|T. [3.2]
We will assume that « contains a term with a constant value of 1, so that a corresponding

offset parameter is included in each 6" %),

The output layer is computed by the multi-class logistic regression probability,
eXp(OJ('zay) cz+ bj)

Zj/ey exp(egf_)y) - Z + bj,)

Pr(y=j| 20" b) = : [3.3]

where b; is an offset for label j, and the output weight matrix @ ?~%) € RXv*K= jg again
constructed by concatenation,

O = o) o . 0T, [3.4]

The vector of probabilities over each possible value of y is denoted,
p(y | ;079 b) = SoftMax(@7Y) z + b), [3.5]

where element j in the output of the SoftMax function is computed as in Equation 3.3.

This set of equations defines a multilayer classifier, which can be summarized as,

p(z | 2;07%)) = (@[ ~2)g) [3.6]
p(y | ;079 b) =SoftMax(@G~Y) z + b), [3.7]
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values derivatives
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Figure 3.2: The sigmoid, tanh, and ReLU activation functions

where the function ¢ is now applied elementwise to the vector of inner products,
o(©@z) = [0(8\" 7 . 2),0(88 77 - @),...,0(0% 77 @) . [3.8]

Now suppose that the hidden features z are never observed, even in the training data.
We can still construct the architecture in Figure 3.1. Instead of predicting y from a discrete
vector of predicted values z, we use the probabilities o (0, - ). The resulting classifier is
barely changed:

z =o(@ %)) [3.9]
p(y | &; ®F~Y) b) =SoftMax(©“~¥) 2 + b). [3.10]

This defines a classification model that predicts the label y € Y from the base features z,
through a“hidden layer” z. This is a feedforward neural network.?

3.2 Designing neural networks

There several ways to generalize the feedforward neural network.

3.2.1 Activation functions

If the hidden layer is viewed as a set of latent features, then the sigmoid function in Equa-
tion 3.9 represents the extent to which each of these features is “activated” by a given
input. However, the hidden layer can be regarded more generally as a nonlinear trans-
formation of the input. This opens the door to many other activation functions, some of
which are shown in Figure 3.2. At the moment, the choice of activation functions is more
art than science, but a few points can be made about the most popular varieties:

’The architecture is sometimes called a multilayer perceptron, but this is misleading, because each layer
is not a perceptron as defined in the previous chapter.
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e The range of the sigmoid function is (0,1). The bounded range ensures that a cas-
cade of sigmoid functions will not “blow up” to a huge output, and this is impor-
tant for deep networks with several hidden layers. The derivative of the sigmoid is
%a(a) =o(a)(1 — o(a)). This derivative becomes small at the extremes, which can

make learning slow; this is called the vanishing gradient problem.

e The range of the tanh activation function is (—1,1): like the sigmoid, the range
is bounded, but unlike the sigmoid, it includes negative values. The derivative is
% tanh(a) = 1 — tanh(a)?, which is steeper than the logistic function near the ori-
gin (LeCun et al., 1998). The tanh function can also suffer from vanishing gradients
at extreme values.

e The rectified linear unit (ReLU) is zero for negative inputs, and linear for positive
inputs (Glorot et al., 2011),

a, a>0

' [3.11]
0, otherwise.

ReLU(a) = {

The derivative is a step function, which is 1 if the input is positive, and zero other-
wise. Once the activation is zero, the gradient is also zero. This can lead to the prob-
lem of “dead neurons”, where some ReLU nodes are zero for all inputs, throughout
learning. A solution is the leaky ReLU, which has a small positive slope for negative
inputs (Maas et al., 2013),

a, a>0

) [3.12]
.0001a, otherwise.

Leaky-ReLU(a) = {

Sigmoid and tanh are sometimes described as squashing functions, because they squash
an unbounded input into a bounded range. Glorot and Bengio (2010) recommend against
the use of the sigmoid activation in deep networks, because its mean value of 3 can cause
the next layer of the network to be saturated, leading to small gradients on its own pa-
rameters. Several other activation functions are reviewed in the textbook by Goodfellow
et al. (2016), who recommend ReLU as the “default option.”

3.2.2 Network structure

Deep networks stack up several hidden layers, with each z(?) acting as the input to the
next layer, 2(@+1)  Ag the total number of nodes in the network increases, so does its
capacity to learn complex functions of the input. Given a fixed number of nodes, one
must decide whether to emphasize width (large K, at each layer) or depth (many layers).
At present, this tradeoff is not well understood.?

SWith even a single hidden layer, a neural network can approximate any continuous function on a closed
and bounded subset of RY to an arbitrarily small non-zero error; see section 6.4.1 of Goodfellow et al. (2016)
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It is also possible to “short circuit” a hidden layer, by propagating information directly
from the input to the next higher level of the network. This is the idea behind residual net-
works, which propagate information directly from the input to the subsequent layer (He
etal., 2016),

z=f(OF )y, [3.13]

where f is any nonlinearity, such as sigmoid or ReLU. A more complex architecture is
the highway network (Srivastava et al., 2015; Kim et al., 2016), in which an addition gate
controls an interpolation between f(©®~?)z) and x,

t =0(0Wx + b)) [3.14]
2=t f(O)x)+(1-t) O, [3.15]

where © refers to an elementwise vector product, and 1 is a column vector of ones. As
before, the sigmoid function is applied elementwise to its input; recall that the output of
this function is restricted to the range (0,1). Gating is also used in the long short-term
memory (LSTM), which is discussed in chapter 6. Residual and highway connections
address a problem with deep architectures: repeated application of a nonlinear activation
function can make it difficult to learn the parameters of the lower levels of the network,
which are too distant from the supervision signal.

3.2.3 Outputs and loss functions

In the multi-class classification example, a softmax output produces probabilities over
each possible label. This aligns with a negative conditional log-likelihood,

N
—L=- Zlogp(y(i) | z;0). [3.16]
i=1

where © = {@@~2) @(7V) b} is the entire set of parameters.

This loss can be written alternatively as follows:

g 2Pr(y =7 |z®;0) [3.17]
N

—L=— Z e, *logy [3.18]
=1

for a survey of these theoretical results. However, depending on the function to be approximated, the width
of the hidden layer may need to be arbitrarily large. Furthermore, the fact that a network has the capacity to
approximate any given function does not imply that it is possible to learn the function using gradient-based
optimization.
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where e, ;) is a one-hot vector of zeros with a value of 1 at position y. The inner product
between e, () and log y is also called the multinomial cross-entropy, and this terminology
is preferred in many neural networks papers and software packages.

It is also possible to train neural networks from other objectives, such as a margin loss.
In this case, it is not necessary to use softmax at the output layer: an affine transformation
of the hidden layer is enough:

U (y; m(i), 0) ZQZ(IZ—W) -z +b, [3.19]
IMarcin (O zc(i), y(i)) = max (1 + U(y; :Il(i), 0) — \I/(y(i); a:(i), @)) . [3.20]
y#y™ +

In regression problems, the output is a scalar or vector (see § 4.1.2). For these problems, a
typical loss function is the squared error (y — §)? or squared norm ||y — 9||3.

3.2.4 Inputs and lookup layers

In text classification, the input layer  can refer to a bag-of-words vector, where z; is
the count of word j. The input to the hidden unit 2y is then 2};1 6](.‘/’;:@
represented by the vector 9](-35%2). This vector is sometimes described as the embedding of
word j, and can be learned from unlabeled data, using techniques discussed in chapter 14.

The columns of ©®(#~2) are each K,-dimensional word embeddings.

xj, and word j is

Chapter 2 presented an alternative view of text documents, as a sequence of word
tokens, wi, wo, ..., wy. In a neural network, each word token wy, is represented with a
one-hot vector, e, , with dimension V. The matrix-vector product ®#~?)e,, returns
the embedding of word w,. The complete document can represented by horizontally
concatenating these one-hot vectors, W = [ey,,, €wy, - - - , €u,, ], and the bag-of-words rep-
resentation can be recovered from the matrix-vector product W([L,1,..., 1], which sums
each row over the tokens m = {1,2,..., M }. The matrix product ©E=2)W contains the
horizontally concatenated embeddings of each word in the document, which will be use-
ful as the starting point for convolutional neural networks (see § 3.4). This is sometimes
called a lookup layer, because the first step is to lookup the embeddings for each word in
the input text.

3.3 Learning neural networks

The feedforward network in Figure 3.1 can now be written as,

z + f(©F2)g0) [3.21]
§  SoftMax <@<Hy>z n b) [3.22]
09— — e, logg, [3.23]
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where f is an elementwise activation function, such as o or ReLU, and ¢ is the loss at
instance i. The parameters ®(*~2) ®(*7%) and b can be estimated using online gradient-
based optimization. The simplest such algorithm is stochastic gradient descent, which
was discussed in § 2.6. Each parameter is updated by the gradient of the loss,

beb— n(t)vbg(i) [3.24]
el(gz—w) <_011(€»2—>:t/) _ U(t)vgl(:—ww(i) [3.25]
O'I(lz—xz) <_07(L:C—>Z) _ n(t)vg(ZHz)g(i)’ [3.26]

where 1) is the learning rate on iteration ¢, (™ is the loss on instance (or minibatch) i,
and 6°7%) is column n of the matrix @2 and Ol(f_’y) is column k of @(—¥),

The gradients of the negative log-likelihood on b and 0,(;_)3’) are similar to the gradi-

ents in logistic regression. For 8(*Y), the gradient is,

N

) (@) (@) (1)
Vgl = a(l;y) : a(z;y) e %Hy) [3.27]

a9/’~c,l aekz,Q aek,Ky

A0 0 (2—1)
=— 0 Y .z —log Z exp 7). 2 [3.28]
B ) (z=y) | v v
00, " 00, " ( v "oy

= (Prly =71 20%.6) =5 (j =y?)) 2. [3.29]

where § (j = y¥) is a function that returns one when j = ¥, and zero otherwise. The
gradient V¢ is similar to Equation 3.29.

The gradients on the input layer weights ®(®~2) are obtained by the chain rule of
differentiation:

o) oD 9z

- [3.30]
T
ot 06" ) 331]
N 0z 89(90:2) ’
n,
(i)
:%ik x f1(05 7 ) x [3.32]

where f’ (0,(;”_”) - ) is the derivative of the activation function f, applied at the input
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Hl(fﬁz) - . For example, if f is the sigmoid function, then the derivative is,
000 0 (60 z) x (1— (8 - ) x [3.33]
aeTk_ﬁz) = azk o\U, xr o\, Zr In .
©)
:%ik Xz X (1 — 2z) X xp. [3.34]

For intuition, consider each of the terms in the product.

o If the negative log-likelihood ¢(*) does not depend much on z, then %Z—Z(: ~ 0. In this

. . ()
case it doesn’t matter how z;, is computed, and so %Lz) ~ 0.
n,k

o If z; is near 1 or 0, then the curve of the sigmoid function is nearly flat (Figure 3.2),
and changing the inputs will make little local difference. The term z x (1 — z) is

maximized at z;, = 3, where the slope of the sigmoid function is steepest.
e If z,, = 0, then it does not matter how we set the weights 9(:0_)2) 50 Ga(ﬁ(lz) =0.
n,k

3.3.1 Backpropagation

The equations above rely on the chain rule to compute derivatives of the loss with respect

to each parameter of the model. Furthermore, local derivatives are frequently reused: for

example, M Y is reused in computing the derivatives with respect to each Hffk_) %) These

terms should therefore be computed once, and then cached. Furthermore, we should only
compute any derivative once we have already computed all of the necessary “inputs”
demanded by the chain rule of differentiation. This combination of sequencing, caching,
and differentiation is known as backpropagation. It can be generalized to any directed
acyclic computation graph.

A computation graph is a declarative representation of a computational process. At
each node ¢, compute a value v; by applying a function f; to a (possibly empty) list of
parent nodes, ;. Figure 3.3 shows the computation graph for a feedforward network
with one hidden layer. There are nodes for the input (9, the hidden layer z, the predicted
output g, and the parameters ©. During training, there is also a node for the ground truth
label ¥ and the loss /(). The predicted output ¥ is one of the parents of the loss (the
other is the label y(i)); its parents include © and z, and so on.

Computation graphs include three types of nodes:
Variables. In the feedforward network of Figure 3.3, the variables include the inputs =z,

the hidden nodes z, the outputs y, and the loss function. Inputs are variables that
do not have parents. Backpropagation computes the gradients with respect to all
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Algorithm 6 General backpropagation algorithm. In the computation graph G, every
node contains a function f; and a set of parent nodes 7; the inputs to the graph are (),

procedure BACKPROP(G = {f;, m:}L |}, ()
(4)

Ut(n) — CL'nZ
fort € TOPOLOGICALSORT(G) do > Forward pass: compute value at each node
if || > 0 then

1:

2 for all n and associated computation nodes ¢(n).

3

4

5 Ot = ft(Umy s Vg -+ o U,rt’Nt)

6 Jobjective = 1 > Backward pass: compute gradients at each node
7 for t € REVERSE(TOPOLOGICALSORT(G)) do

8 g Zt,:tew gy X Vy, vy >Sum over all ¢’ that are children of ¢, propagating

the gradient gy, scaled by the local gradient V,, vy
9: return {g1,92,...,97}

variables except the inputs, and propagates these gradients backwards to the pa-
rameters.

Parameters. In a feedforward network, the parameters include the weights and offsets.
In Figure 3.3, the parameters are summarized in the node ©, but we could have
separate nodes for ®(@ %), ®(>7¥) and any offset parameters. Parameter nodes do
not have parents; they are not computed from other nodes, but rather, are learned
by gradient descent.

Loss. The loss ¢(%) is the quantity that is to be minimized during training. The node rep-
resenting the loss in the computation graph is not the parent of any other node; its
parents are typically the predicted label ¢ and the true label y(*). Backpropagation
begins by computing the gradient of the loss, and then propagating this gradient
backwards to its immediate parents.

If the computation graph is a directed acyclic graph, then it is possible to order the
nodes with a topological sort, so that if node ¢ is a parent of node ¢/, then ¢ < ¢'. This
means that the values {v;}7_; can be computed in a single forward pass. The topolog-
ical sort is reversed when computing gradients: each gradient g; is computed from the
gradients of the children of ¢, implementing the chain rule of differentiation. The general
backpropagation algorithm for computation graphs is shown in Algorithm 6.

While the gradients with respect to each parameter may be complex, they are com-
posed of products of simple parts. For many networks, all gradients can be computed
through automatic differentiation. This means that you need only specify the feedfor-
ward computation, and the gradients necessary for learning can be obtained automati-
cally. There are many software libraries that perform automatic differentiation on compu-
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Figure 3.3: A computation graph for the feedforward neural network shown in Figure 3.1.

tation graphs, such as TORCH (Collobert et al., 2011), TENSORFLOW (Abadi et al., 2016),
and DYNET (Neubig et al., 2017). One important distinction between these libraries is
whether they support dynamic computation graphs, in which the structure of the compu-
tation graph varies across instances. Static computation graphs are compiled in advance,
and can be applied to fixed-dimensional data, such as bag-of-words vectors. In many nat-
ural language processing problems, each input has a distinct structure, requiring a unique
computation graph. A simple case occurs in recurrent neural network language models
(see chapter 6), in which there is one node for each word in a sentence. More complex
cases include recursive neural networks (see chapter 14), in which the network is a tree
structure matching the syntactic organization of the input.

3.3.2 Regularization and dropout

In linear classification, overfitting was addressed by augmenting the objective with a reg-
ularization term, A||@||3. This same approach can be applied to feedforward neural net-
works, penalizing each matrix of weights:

N
L= 004 A [[@FV|% 4 A, ]|@F7| 3, [3.35]
=1

where ||©||7 = )7, ; 67, is the squared Frobenius norm, which generalizes the Ly norm
to matrices. The bias parameters b are not regularized, as they do not contribute to the
sensitivity of the classifier to the inputs. In gradient-based optimization, the practical
effect of Frobenius norm regularization is that the weights “decay” towards zero at each
update, motivating the alternative name weight decay.

Another approach to controlling model complexity is dropout, which involves ran-
domly setting some computation nodes to zero during training (Srivastava et al., 2014).
For example, in the feedforward network, on each training instance, with probability p we
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set each input z,, and each hidden layer node z;, to zero. Srivastava et al. (2014) recom-

mend p = 0.5 for hidden units, and p = 0.2 for input units. Dropout is also incorporated

in the gradient computation, so if node z;, is dropped, then none of the weights Oliz_m) will

be updated for this instance. Dropout prevents the network from learning to depend too
much on any one feature or hidden node, and prevents feature co-adaptation, in which a
hidden unit is only useful in combination with one or more other hidden units. Dropout is
a special case of feature noising, which can also involve adding Gaussian noise to inputs
or hidden units (Holmstrom and Koistinen, 1992). Wager et al. (2013) show that dropout is
approximately equivalent to “adaptive” L, regularization, with a separate regularization
penalty for each feature.

3.3.3 *Learning theory

Chapter 2 emphasized the importance of convexity for learning: for convex objectives,
the global optimum can be found efficiently. The negative log-likelihood and hinge loss
are convex functions of the parameters of the output layer. However, the output of a feed-
forward network is generally not a convex function of the parameters of the input layer,
©(@—2) Feedforward networks can be viewed as function composition, where each layer
is a function that is applied to the output of the previous layer. Convexity is generally not
preserved in the composition of two convex functions — and furthermore, “squashing”
activation functions like tanh and sigmoid are not convex.

The non-convexity of hidden layer neural networks can also be seen by permuting the
elements of the hidden layer, from z = [21, 22, ..., 2K ] 10 2 = [2:(1), Zr(2), - - - » Zn(K))- This
corresponds to applying 7 to the rows of ©®~2) and the columns of ®(*7¥), resulting in

permuted parameter matrices ® ) and ® . As long as this permutation is applied
consistently, the loss will be identical, L(®) = L(®): it is invariant to this permutation.
However, the loss of the linear combination L(a® + (1 — a)®,) will generally not be
identical to the loss under © or its permutations. If L(®) is better than the loss at any
points in the immediate vicinity, and if L(®) = L(©,), then the loss function does not
satisfy the definition of convexity (see § 2.4). One of the exercises asks you to prove this
more rigorously.

In practice, the existence of multiple optima is not necessary problematic, if all such
optima are permutations of the sort described in the previous paragraph. In contrast,
“bad” local optima are better than their neighbors, but much worse than the global op-
timum. Fortunately, in large feedforward neural networks, most local optima are nearly
as good as the global optimum (Choromanska et al., 2015). More generally, a critical
point is one at which the gradient is zero. Critical points may be local optima, but they
may also be saddle points, which are local minima in some directions, but local maxima
in other directions. For example, the equation 27 — 23 has a saddle point at z = (0,0).
In large networks, the overwhelming majority of critical points are saddle points, rather
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than local minima or maxima (Dauphin et al., 2014). Saddle points can pose problems
for gradient-based optimization, since learning will slow to a crawl as the gradient goes
to zero. However, the noise introduced by stochastic gradient descent, and by feature
noising techniques such as dropout, can help online optimization to escape saddle points
and find high-quality optima (Ge et al., 2015). Other techniques address saddle points
directly, using local reconstructions of the Hessian matrix (Dauphin et al., 2014) or higher-
order derivatives (Anandkumar and Ge, 2016).

Another theoretical puzzle about neural networks is how they are able to generalize
to unseen data. Given enough parameters, a two-layer feedforward network can “mem-
orize” its training data, attaining perfect accuracy on any training set. A particularly
salient demonstration was provided by Zhang et al. (2017), who showed that neural net-
works can learn to perfectly classify a training set of images, even when the labels are
replaced with random values! Of course, this network attains only chance accuracy when
applied to heldout data. The concern is that when such a powerful learner is applied to
real training data, it may learn a pathological classification function, which exploits irrel-
evant details of the training data and fails to generalize. Yet this extreme overfitting is
rarely encountered in practice, and can usually be prevented by regularization, dropout,
and early stopping (see § 3.3.4). Recent papers have derived generalization guarantees for
specific classes of neural networks (e.g., Kawaguchi et al., 2017; Brutzkus et al., 2018), but
theoretical work in this area is ongoing.

3.3.4 Tricks

Getting neural networks to work sometimes requires heuristic “tricks” (Bottou, 2012;
Goodfellow et al., 2016; Goldberg, 2017b). This section presents some tricks that are espe-
cially important.

Initialization Initialization is not especially important for linear classifiers, since con-
vexity ensures that the global optimum can usually be found quickly. But for multilayer
neural networks, it is helpful to have a good starting point. One reason is that if the mag-
nitude of the initial weights is too large, a sigmoid or tanh nonlinearity will be saturated,
leading to a small gradient, and slow learning. Large gradients can cause training to di-
verge, with the parameters taking increasingly extreme values until reaching the limits of
the floating point representation.

Initialization can help avoid these problems by ensuring that the variance over the
initial gradients is constant and bounded throughout the network. For networks with
tanh activation functions, this can be achieved by sampling the initial weights from the
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following uniform distribution (Glorot and Bengio, 2010),

Ul V6 V6
Vdin(n) + dout(n) \/din(n) + dout(n)

i ~ , [3.36]

[3.37]

For the weights leading to a ReLU activation function, He et al. (2015) use similar argu-
mentation to justify sampling from a zero-mean Gaussian distribution,

0ij ~ N(0,v/2/din(n)) [3.38]

Rather than initializing the weights independently, it can be beneficial to initialize each
layer jointly as an orthonormal matrix, ensuring that ©'O® = I (Saxe et al., 2014). Or-
thonormal matrices preserve the norm of the input, so that ||@x|| = ||x||, which prevents
the gradients from exploding or vanishing. Orthogonality ensures that the hidden units
are uncorrelated, so that they correspond to different features of the input. Orthonormal
initialization can be performed by applying singular value decomposition to a matrix of
values sampled from a standard normal distribution:

a;j ~N(0,1) [3.39]

A ={aiym) 50 [3.40]

U,S, V' =svD(A) [3.41]
ev) ~uU. [3.42]

The matrix U contains the singular vectors of A, and is guaranteed to be orthonormal.
For more on singular value decomposition, see chapter 14.

Even with careful initialization, there can still be significant variance in the final re-
sults. It can be useful to make multiple training runs, and select the one with the best
performance on a heldout development set.

Clipping and normalization Learning can be sensitive to the magnitude of the gradient:
too large, and learning can diverge, with successive updates thrashing between increas-
ingly extreme values; too small, and learning can grind to a halt. Several heuristics have
been proposed to address this issue.

e In gradient clipping (Pascanu et al., 2013), an upper limit is placed on the norm of
the gradient, and the gradient is rescaled when this limit is exceeded,

CLIP(§) = {g gl < [3.43]

ﬁ g otherwise.
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¢ In batch normalization (Ioffe and Szegedy, 2015), the inputs to each computation
node are recentered by their mean and variance across all of the instances in the
minibatch B (see § 2.6.2). For example, in a feedforward network with one hidden
layer, batch normalization would tranform the inputs to the hidden layer as follows:

1 .
® — L 40
W = > e [3.44]
ieB
$B) = S () — B2 [3.45]
Bl
70 =(2 — u®)/\/sB). [3.46]

Empirically, this speeds convergence of deep architectures. One explanation is that
it helps to correct for changes in the distribution of activations during training.

e In layer normalization (Ba et al., 2016), the inputs to each nonlinear activation func-
tion are recentered across the layer:

a =003y [3.47]
1 &

k=7 Z ag [3.48]
? k=1
1 &

§ =7 Z(ak — u)? [3.49]
? k=1

z =(a—p)/Vs. [3.50]

Layer normalization has similar motivations to batch normalization, but it can be
applied across a wider range of architectures and training conditions.

Online optimization There is a cottage industry of online optimization algorithms that
attempt to improve on stochastic gradient descent. AdaGrad was reviewed in § 2.6.2; its
main innovation is to set adaptive learning rates for each parameter by storing the sum
of squared gradients. Rather than using the sum over the entire training history, we can
keep a running estimate,

Uj(t) :ij(ffl) +(1— ﬁ)gf,y [3.51]

where g, ; is the gradient with respect to parameter j at time ¢, and 5 € [0, 1]. This term
places more emphasis on recent gradients, and is employed in the AdaDelta (Zeiler, 2012)
and Adam (Kingma and Ba, 2014) optimizers. Online optimization and its theoretical
background are reviewed by Bottou et al. (2016). Early stopping, mentioned in § 2.3.2,
can help to avoid overfitting by terminating training after reaching a plateau in the per-
formance on a heldout validation set.
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Practical advice The bag of tricks for training neural networks continues to grow, and
it is likely that there will be several new ones by the time you read this. Today, it is
standard practice to use gradient clipping, early stopping, and a sensible initialization of
parameters to small random values. More bells and whistles can be added as solutions to
specific problems — for example, if it is difficult to find a good learning rate for stochastic
gradient descent, then it may help to try a fancier optimizer with an adaptive learning
rate. Alternatively, if a method such as layer normalization is used by related models
in the research literature, you should probably consider it, especially if you are having
trouble matching published results. As with linear classifiers, it is important to evaluate
these decisions on a held-out development set, and not on the test set that will be used to
provide the final measure of the model’s performance (see § 2.2.5).

3.4 Convolutional neural networks

A basic weakness of the bag-of-words model is its inability to account for the ways in
which words combine to create meaning, including even simple reversals such as not
pleasant, hardly a generous offer, and I wouldn’'t mind missing the flight. Computer vision
faces the related challenge of identifying the semantics of images from pixel features
that are uninformative in isolation. An earlier generation of computer vision research
focused on designing filters to aggregate local pixel-level features into more meaningful
representations, such as edges and corners (e.g., Canny, 1987). Similarly, earlier NLP re-
search attempted to capture multiword linguistic phenomena by hand-designed lexical
patterns (Hobbs et al., 1997). In both cases, the output of the filters and patterns could
then act as base features in a linear classifier. But rather than designing these feature ex-
tractors by hand, a better approach is to learn them, using the magic of backpropagation.
This is the idea behind convolutional neural networks.

Following § 3.2.4, define the base layer of a neural network as,
X0 = @—=2) [€wrs €y - -+ s €y [3.52]

where e, is a column vector of zeros, with a 1 at position wy,. The base layer has dimen-
sion X(0) ¢ REXM where K, is the size of the word embeddings. To merge information
across adjacent words, we convolve X (0) with a set of filter matrices C*) € REe*" Convo-
lution is indicated by the symbol *, and is defined,

Ke h
XD =fo+CxX0) — N =7 (bk + 30D e x x;(f,)m+n_1> . [353]
k'=1n=1

where f is an activation function such as tanh or ReLU, and b is a vector of offsets. The

convolution operation slides the matrix C*) across the columns of X(*). At each position

(0)

memah—1- and take the sum.

m, we compute the elementwise product C*) ® X

Jacob Eisenstein. Draft of November 13, 2018.



3.4. CONVOLUTIONAL NEURAL NETWORKS 63
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Figure 3.4: A convolutional neural network for text classification

A simple filter might compute a weighted average over nearby words,

0.5 1 0.5
oy |05 1 05| (3541
0.5 1 05

thereby representing trigram units like not so unpleasant. In one-dimensional convolu-
tion, each filter matrix C*) is constrained to have non-zero values only at row £ (Kalch-
brenner et al., 2014). This means that each dimension of the word embedding is processed
by a separate filter, and it implies that K; = K.

To deal with the beginning and end of the input, the base matrix X(°) may be padded
with h column vectors of zeros at the beginning and end; this is known as wide convolu-
tion. If padding is not applied, then the output from each layer will be 2 — 1 units smaller
than the input; this is known as narrow convolution. The filter matrices need not have
identical filter widths, so more generally we could write hy, to indicate to width of filter
C). As suggested by the notation X(°), multiple layers of convolution may be applied,
so that X(@ is the input to X (4+1),

After D convolutional layers, we obtain a matrix representation of the document X(P) ¢
RE=*M Tf the instances have variable lengths, it is necessary to aggregate over all M word
positions to obtain a fixed-length representation. This can be done by a pooling operation,
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Figure 3.5: A dilated convolutional neural network captures progressively larger context

through recursive application of the convolutional operator

such as max-pooling (Collobert et al., 2011) or average-pooling,

z = MaxPoo](X(D)) — 2z, = max (x](cﬁ),x,ig), e 1:,53%) [3.55]
1 (D
(D) il E
z = AvgPool(X'") = 2z, = 2 Tom [3.56]

The vector z can now act as a layer in a feedforward network, culminating in a prediction
¢ and a loss (). The setup is shown in Figure 3.4.

Just as in feedforward networks, the parameters (C*), b, ©) can be learned by back-
propagating from the classification loss. This requires backpropagating through the max-
pooling operation, which is a discontinuous function of the input. But because we need
only a local gradient, backpropagation flows only through the argmax m:

D D D D
0z _ [1 ail) = max (a0 o)) [3.57]
9 ](CDW)L 0, otherwise.

The computer vision literature has produced a huge variety of convolutional archi-
tectures, and many of these innovations can be applied to text data. One avenue for
improvement is more complex pooling operations, such as k-max pooling (Kalchbrenner
et al., 2014), which returns a matrix of the k largest values for each filter. Another innova-
tion is the use of dilated convolution to build multiscale representations (Yu and Koltun,
2016). At each layer, the convolutional operator applied in strides, skipping ahead by s
steps after each feature. As we move up the hierarchy, each layer is s times smaller than
the layer below it, effectively summarizing the input (Kalchbrenner et al., 2016; Strubell
et al., 2017). This idea is shown in Figure 3.5. Multi-layer convolutional networks can also
be augmented with “shortcut” connections, as in the residual network from § 3.2.2 (John-
son and Zhang, 2017).
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Additional resources

The deep learning textbook by Goodfellow et al. (2016) covers many of the topics in this
chapter in more detail. For a comprehensive review of neural networks in natural lan-
guage processing, see Goldberg (2017b). A seminal work on deep learning in natural
language processing is the aggressively titled “Natural Language Processing (Almost)
from Scratch”, which uses convolutional neural networks to perform a range of language
processing tasks (Collobert et al., 2011), although there is earlier work (e.g., Henderson,
2004). This chapter focuses on feedforward and convolutional neural networks, but recur-
rent neural networks are one of the most important deep learning architectures for natural
language processing. They are covered extensively in chapters 6 and 7.

The role of deep learning in natural language processing research has caused angst
in some parts of the natural language processing research community (e.g., Goldberg,
2017a), especially as some of the more zealous deep learning advocates have argued that
end-to-end learning from “raw” text can eliminate the need for linguistic constructs such
as sentences, phrases, and even words (Zhang et al., 2015, originally titled “Text under-
standing from scratch”). These developments were surveyed by Manning (2015). While
reports of the demise of linguistics in natural language processing remain controversial
at best, deep learning and backpropagation have become ubiquitous in both research and
applications.

Exercises

1. Figure 3.3 shows the computation graph for a feedforward neural network with one
layer.

a) Update the computation graph to include a residual connection between « and
z.
b) Update the computation graph to include a highway connection between x

and z.

2. Prove that the softmax and sigmoid functions are equivalent when the number of
possible labels is two. Specifically, for any ®*~%) (omitting the offset b for simplic-
ity), show how to construct a vector of weights 8 such that,

SoftMax(®~¥)2)[0] = o(8 - 2). [3.58]

3. Convolutional neural networks often aggregate across words by using max-pooling
(Equation 3.55 in § 3.4). A potential concern is that there is zero gradient with re-
spect to the parts of the input that are not included in the maximum. The following
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(0)

e and

questions consider the gradient with respect to an element of the input, =
they assume that all parameters are independently distributed.

a) First consider a minimal network, with z = MaxPool(X(?)). What is the prob-

ability that the gradient 83% is non-zero?
a’,m,k

b) Now consider a two-level network, with X(1) = (b 4 C % X)), Express the
probability that the gradient % is non-zero, in terms of the input length M,
oz, "

the filter size n, and the number of filters K £

c) Using a calculator, work out the probability for the case M = 128,n = 4, Ky =

32.
d) Now consider a three-level network, X) = f(b + C x X(1)). Give the general
equation for the probability that 5 9t~ is non-zero, and compute the numerical
mm,k

probability for the scenario in the previous part, assuming Ky = 32 and n = 4
at both levels.

4. Design a feedforward network to compute the XOR function:

—1, Tl = 1,%2 =1
1, .%'1:1,.%'2:0

f(CL‘l,QL'Q) = [359]

1, 21=022=1
—1, $1:O,$2:0

Your network should have a single output node which uses the Sign activation func-

1, >0 . . . N
tion, f(x) = v . Use a single hidden layer, with ReLU activation func-
-1, <0 8 Y

tions. Describe all weights and offsets.

5. Consider the same network as above (with ReLU activations for the hidden layer),
with an arbitrary differentiable loss function ¢ (39, 7), where 7 is the activation of
the output node. Suppose all weights and offsets are initialized to zero. Show that
gradient descent will not learn the desired function from this initialization.

6. The simplest solution to the previous problem relies on the use of the ReLU activa-
tion function at the hidden layer. Now consider a network with arbitrary activations
on the hidden layer. Show that if the initial weights are any uniform constant, then
gradient descent will not learn the desired function from this initialization.

7. Consider a network in which: the base features are all binary, z € {0,1}; the
hidden layer activation function is sigmoid, z; = (8 - «); and the initial weights
are sampled independently from a standard normal distribution, ; ;, ~ N (0, 1).
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e Show how the probability of a small initial gradient on any weight, a%j-kk < a,
depends on the size of the input M. Hint: use the lower bound, ’

Pr(c(0p - x) x (1—0(0y-x)) <a) > 2Pr(c(fy-z) < a), [3.60]

and relate this probability to the variance V[0, - x].
e Design an alternative initialization that removes this dependence.

8. The ReL.U activation function can lead to “dead neurons”, which can never be acti-
vated on any input. Consider the following two-layer feedforward network with a
scalar output y:

% =ReLU(0\" 7 .z + ;) [3.61]
y =07 . 2. [3.62]
Suppose that the input is a binary vector of observations, = € {0,1}?.

a) Under what condition is node z; “dead”? Your answer should be expressed in
terms of the parameters 6" and b.

i
b) Suppose that the gradient of the loss on a given instance is (% = 1. Derive the

radients 2£ and —2% - for such an instance.
& b 90

(z—=2)
Jrt

¢) Using your answers to the previous two parts, explain why a dead neuron can
never be brought back to life during gradient-based learning.

9. Suppose that the parameters © = {02 ©(z — y), b} are a local optimum of a
feedforward network in the following sense: there exists some € > 0 such that,

O@@%”—GWHW@+W@“ﬂD—9@WW%+H5—H@<Q
:(M@>L@D [3.63]

Define the function 7 as a permutation on the hidden units, as described in § 3.3.3,
so that for any ©, L(©) = L(©,). Prove that if a feedforward network has a local
optimum in the sense of Equation 3.63, then its loss is not a convex function of the
parameters O, using the definition of convexity from § 2.4

10. Consider a network with a single hidden layer, and a single output,
y= 060 . g(@F 7)), [3.64]

Assume that g is the ReLU function. Show that for any matrix of weights ©@~2) it
is permissible to rescale each row to have a norm of one, because an identical output
can be obtained by finding a corresponding rescaling of 8*=¥).
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Chapter 4

Linguistic applications of
classification

Having covered several techniques for classification, this chapter shifts the focus from
mathematics to linguistic applications. Later in the chapter, we will consider the design
decisions involved in text classification, as well as best practices for evaluation.

4.1 Sentiment and opinion analysis

A popular application of text classification is to automatically determine the sentiment
or opinion polarity of documents such as product reviews and social media posts. For
example, marketers are interested to know how people respond to advertisements, ser-
vices, and products (Hu and Liu, 2004); social scientists are interested in how emotions
are affected by phenomena such as the weather (Hannak et al., 2012), and how both opin-
ions and emotions spread over social networks (Coviello et al., 2014; Miller et al., 2011).
In the field of digital humanities, literary scholars track plot structures through the flow
of sentiment across a novel (Jockers, 2015).1

Sentiment analysis can be framed as a direct application of document classification,
assuming reliable labels can be obtained. In the simplest case, sentiment analysis is a
two or three-class problem, with sentiments of POSITIVE, NEGATIVE, and possibly NEU-
TRAL. Such annotations could be annotated by hand, or obtained automatically through
a variety of means:

e Tweets containing happy emoticons can be marked as positive, sad emoticons as
negative (Read, 2005; Pak and Paroubek, 2010).

!Comprehensive surveys on sentiment analysis and related problems are offered by Pang and Lee (2008)
and Liu (2015).
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e Reviews with four or more stars can be marked as positive, three or fewer stars as
negative (Pang et al., 2002).

e Statements from politicians who are voting for a given bill are marked as positive
(towards that bill); statements from politicians voting against the bill are marked as
negative (Thomas et al., 2006).

The bag-of-words model is a good fit for sentiment analysis at the document level: if
the document is long enough, we would expect the words associated with its true senti-
ment to overwhelm the others. Indeed, lexicon-based sentiment analysis avoids machine
learning altogether, and classifies documents by counting words against positive and neg-
ative sentiment word lists (Taboada et al., 2011).

Lexicon-based classification is less effective for short documents, such as single-sentence
reviews or social media posts. In these documents, linguistic issues like negation and ir-
realis (Polanyi and Zaenen, 2006) — events that are hypothetical or otherwise non-factual
— can make bag-of-words classification ineffective. Consider the following examples:

(4.1) That’s not bad for the first day.
This is not the worst thing that can happen.

It would be nice if you acted like you understood.

& n T p

There is no reason at all to believe that the polluters are suddenly going to
become reasonable. (Wilson et al., 2005)

e. This film should be brilliant. The actors are first grade. Stallone plays a
happy, wonderful man. His sweet wife is beautiful and adores him. He has
a fascinating gift for living life fully. It sounds like a great plot, however, the
film is a failure. (Pang et al., 2002)

A minimal solution is to move from a bag-of-words model to a bag-of-bigrams model,
where each base feature is a pair of adjacent words, e.g.,

(that’s, not), (not, bad), (bad, for), . . . [4.1]

Bigrams can handle relatively straightforward cases, such as when an adjective is immedi-
ately negated; trigrams would be required to extend to larger contexts (e.g., not the worst).
But this approach will not scale to more complex examples like (4.1d) and (4.1e). More
sophisticated solutions try to account for the syntactic structure of the sentence (Wilson
et al., 2005; Socher et al., 2013), or apply more complex classifiers such as convolutional
neural networks (Kim, 2014), which are described in chapter 3.

4.1.1 Related problems

Subjectivity Closely related to sentiment analysis is subjectivity detection, which re-
quires identifying the parts of a text that express subjective opinions, as well as other non-

Jacob Eisenstein. Draft of November 13, 2018.



4.1. SENTIMENT AND OPINION ANALYSIS 71

factual content such as speculation and hypotheticals (Riloff and Wiebe, 2003). This can be
done by treating each sentence as a separate document, and then applying a bag-of-words
classifier: indeed, Pang and Lee (2004) do exactly this, using a training set consisting of
(mostly) subjective sentences gathered from movie reviews, and (mostly) objective sen-
tences gathered from plot descriptions. They augment this bag-of-words model with a
graph-based algorithm that encourages nearby sentences to have the same subjectivity
label.

Stance classification In debates, each participant takes a side: for example, advocating
for or against proposals like adopting a vegetarian lifestyle or mandating free college ed-
ucation. The problem of stance classification is to identify the author’s position from the
text of the argument. In some cases, there is training data available for each position,
so that standard document classification techniques can be employed. In other cases, it
suffices to classify each document as whether it is in support or opposition of the argu-
ment advanced by a previous document (Anand et al., 2011). In the most challenging
case, there is no labeled data for any of the stances, so the only possibility is group docu-
ments that advocate the same position (Somasundaran and Wiebe, 2009). This is a form
of unsupervised learning, discussed in chapter 5.

Targeted sentiment analysis The expression of sentiment is often more nuanced than a
simple binary label. Consider the following examples:

(4.2) a. The vodka was good, but the meat was rotten.
b. Go to Heaven for the climate, Hell for the company. -Mark Twain

These statements display a mixed overall sentiment: positive towards some entities (e.g.,
the vodka), negative towards others (e.g., the meat). Targeted sentiment analysis seeks to
identify the writer’s sentiment towards specific entities (Jiang et al., 2011). This requires
identifying the entities in the text and linking them to specific sentiment words — much
more than we can do with the classification-based approaches discussed thus far. For
example, Kim and Hovy (2006) analyze sentence-internal structure to determine the topic
of each sentiment expression.

Aspect-based opinion mining seeks to identify the sentiment of the author of a review
towards predefined aspects such as PRICE and SERVICE, or, in the case of (4.2b), CLIMATE
and COMPANY (Hu and Liu, 2004). If the aspects are not defined in advance, it may again
be necessary to employ unsupervised learning methods to identify them (e.g., Branavan
et al., 2009).

Emotion classification While sentiment analysis is framed in terms of positive and neg-
ative categories, psychologists generally regard emotion as more multifaceted. For ex-
ample, Ekman (1992) argues that there are six basic emotions — happiness, surprise, fear,
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sadness, anger, and contempt — and that they are universal across human cultures. Alm
et al. (2005) build a linear classifier for recognizing the emotions expressed in children’s
stories. The ultimate goal of this work was to improve text-to-speech synthesis, so that
stories could be read with intonation that reflected the emotional content. They used bag-
of-words features, as well as features capturing the story type (e.g., jokes, folktales), and
structural features that reflect the position of each sentence in the story. The task is diffi-
cult: even human annotators frequently disagreed with each other, and the best classifiers
achieved accuracy between 60-70%.

4.1.2 Alternative approaches to sentiment analysis

Regression A more challenging version of sentiment analysis is to determine not just
the class of a document, but its rating on a numerical scale (Pang and Lee, 2005). If the
scale is continuous, it is most natural to apply regression, identifying a set of weights 0
that minimize the squared error of a predictor y = 6 - « + b, where b is an offset. This
approach is called linear regression, and sometimes least squares, because the regression
coefficients 0 are determined by minimizing the squared error, (y — §)2. If the weights are
regularized using a penalty A||6]|3, then it is ridge regression. Unlike logistic regression,
both linear regression and ridge regression can be solved in closed form as a system of
linear equations.

Ordinal ranking In many problems, the labels are ordered but discrete: for example,
product reviews are often integers on a scale of 1 — 5, and grades are on a scale of A — F.
Such problems can be solved by discretizing the score 6 - « into “ranks”,

9 = argmaxr, [4.2]
r: 0-x>b,
where b = [b; = —00, b2, bs,...,bxk] is a vector of boundaries. It is possible to learn the

weights and boundaries simultaneously, using a perceptron-like algorithm (Crammer and
Singer, 2001).

Lexicon-based classification Sentiment analysis is one of the only NLP tasks where
hand-crafted feature weights are still widely employed. In lexicon-based classification (Taboada
et al., 2011), the user creates a list of words for each label, and then classifies each docu-

ment based on how many of the words from each list are present. In our linear classifica-

tion framework, this is equivalent to choosing the following weights:

1, jeL
0,i =1 " v 4.3
v { 0, otherwise, [4.3]
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where L, is the lexicon for label y. Compared to the machine learning classifiers discussed
in the previous chapters, lexicon-based classification may seem primitive. However, su-
pervised machine learning relies on large annotated datasets, which are time-consuming
and expensive to produce. If the goal is to distinguish two or more categories in a new
domain, it may be simpler to start by writing down a list of words for each category.

An early lexicon was the General Inquirer (Stone, 1966). Today, popular sentiment lexi-
cons include SENTIWORDNET (Esuli and Sebastiani, 2006) and an evolving set of lexicons
from Liu (2015). For emotions and more fine-grained analysis, Linguistic Inquiry and Word
Count (LIWC) provides a set of lexicons (Tausczik and Pennebaker, 2010). The MPQA lex-
icon indicates the polarity (positive or negative) of 8221 terms, as well as whether they are
strongly or weakly subjective (Wiebe et al., 2005). A comprehensive comparison of senti-
ment lexicons is offered by Ribeiro et al. (2016). Given an initial seed lexicon, it is possible
to automatically expand the lexicon by looking for words that frequently co-occur with
words in the seed set (Hatzivassiloglou and McKeown, 1997; Qiu et al., 2011).

4.2 Word sense disambiguation

Consider the the following headlines:

(4.3) a. Iraqi head seeks arms

b. Prostitutes appeal to Pope

c. Drunk gets nine years in violin case?

These headlines are ambiguous because they contain words that have multiple mean-
ings, or senses. Word sense disambiguation is the problem of identifying the intended
sense of each word token in a document. Word sense disambiguation is part of a larger
field of research called lexical semantics, which is concerned with meanings of the words.

At a basic level, the problem of word sense disambiguation is to identify the correct
sense for each word token in a document. Part-of-speech ambiguity (e.g., noun versus
verb) is usually considered to be a different problem, to be solved at an earlier stage.
From a linguistic perspective, senses are not properties of words, but of lemmas, which
are canonical forms that stand in for a set of inflected words. For example, arm/N is a
lemma that includes the inflected form arms/N — the /N indicates that it we are refer-
ring to the noun, and not its homonym arm/V, which is another lemma that includes
the inflected verbs (arm/V,arms/V, armed/V,arming/V). Therefore, word sense disam-
biguation requires first identifying the correct part-of-speech and lemma for each token,

2These examples, and many more, can be found at http://www.ling.upenn.edu/-beatrice/
humor/headlines.html
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and then choosing the correct sense from the inventory associated with the corresponding
lemma.? (Part-of-speech tagging is discussed in § 8.1.)

421 How many word senses?

Words sometimes have many more than two senses, as exemplified by the word serve:

FUNCTIONY]: The tree stump served as a table

CONTRIBUTE TO]: His evasive replies only served to heighten suspicion

ENLIST]: She served in an elite combat unit

JAIL]: He served six years for a crime he didn’t commit
4

[
[
[PROVIDE]: We serve only the rawest fish
[
[
[

LEGALY]: They were served with subpoenas

These sense distinctions are annotated in WORDNET (http://wordnet .princeton.
edu), a lexical semantic database for English. WORDNET consists of roughly 100,000
synsets, which are groups of lemmas (or phrases) that are synonymous. An example
synset is {chump®, fool®, sucker*, mark”}, where the superscripts index the sense of each
lemma that is included in the synset: for example, there are at least eight other senses of
mark that have different meanings, and are not part of this synset. A lemma is polysemous
if it participates in multiple synsets.

WORDNET defines the scope of the word sense disambiguation problem, and, more
generally, formalizes lexical semantic knowledge of English. (WordNets have been cre-
ated for a few dozen other languages, at varying levels of detail.) Some have argued
that WordNet's sense granularity is too fine (Ide and Wilks, 2006); more fundamentally,
the premise that word senses can be differentiated in a task-neutral way has been criti-
cized as linguistically naive (Kilgarriff, 1997). One way of testing this question is to ask
whether people tend to agree on the appropriate sense for example sentences: accord-
ing to Mihalcea et al. (2004), people agree on roughly 70% of examples using WordNet
senses; far better than chance, but less than agreement on other tasks, such as sentiment
annotation (Wilson et al., 2005).

*Other lexical semantic relations Besides synonymy, WordNet also describes many
other lexical semantic relationships, including:

e antonymy: x means the opposite of y, e.g. FRIEND-ENEMY;

*Navigli (2009) provides a survey of approaches for word-sense disambiguation.
*Several of the examples are adapted from WORDNET (Fellbaum, 2010).
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e hyponymy: x is a special case of y, e.g. RED-COLOR; the inverse relationship is
hypernymy;
e meronymy: x is a part of y, e.g., WHEEL-BICYCLE; the inverse relationship is holonymy.

Classification of these relations can be performed by searching for characteristic pat-
terns between pairs of words, e.g., X, such as Y, which signals hyponymy (Hearst, 1992),
or X but Y, which signals antonymy (Hatzivassiloglou and McKeown, 1997). Another ap-
proach is to analyze each term’s distributional statistics (the frequency of its neighboring
words). Such approaches are described in detail in chapter 14.

4.2.2 Word sense disambiguation as classification

How can we tell living plants from manufacturing plants? The context is often critical:

(4.4) a. Town officials are hoping to attract new manufacturing plants through weak-
ened environmental regulations.

b. The endangered plants play an important role in the local ecosystem.

It is possible to build a feature vector using the bag-of-words representation, by treat-
ing each context as a pseudo-document. The feature function is then,

f((plant, The endangered plants play an ... ),y) =
{(the,y) : 1, (endangered,y) : 1, (play,y) : 1, (an,y) : 1,...}

As in document classification, many of these features are irrelevant, but a few are very
strong predictors. In this example, the context word endangered is a strong signal that
the intended sense is biology rather than manufacturing. We would therefore expect a
learning algorithm to assign high weight to (endangered, BIOLOGY), and low weight to
(endangered, MANUFACTURING).

It may also be helpful to go beyond the bag-of-words: for example, one might encode
the position of each context word with respect to the target, e.g.,

f((bank, I went to the bank to deposit my paycheck),y) =
{(i — 3, went,y) : 1, (i + 2,deposit,y) : 1, (i + 4, paycheck,y) : 1}

These are called collocation features, and they give more information about the specific
role played by each context word. This idea can be taken further by incorporating addi-
tional syntactic information about the grammatical role played by each context feature,
such as the dependency path (see chapter 11).

The context bag-of-words can be also used be used to perform word-sense disambiguation without
machine learning: the Lesk (1986) algorithm selects the word sense whose dictionary definition best overlaps
the local context.
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Using such features, a classifier can be trained from labeled data. A semantic concor-
dance is a corpus in which each open-class word (nouns, verbs, adjectives, and adverbs)
is tagged with its word sense from the target dictionary or thesaurus. SemCor is a seman-
tic concordance built from 234K tokens of the Brown corpus (Francis and Kucera, 1982),
annotated as part of the WORDNET project (Fellbaum, 2010). SemCor annotations look
like this:

(4.5) As of Sunday}, night}; there was{, no wordy; ...,

with the superscripts indicating the annotated sense of each polysemous word, and the
subscripts indicating the part-of-speech.

As always, supervised classification is only possible if enough labeled examples can
be accumulated. This is difficult in word sense disambiguation, because each polysemous
lemma requires its own training set: having a good classifier for the senses of serve is no
help towards disambiguating plant. For this reason, unsupervised and semi-supervised
methods are particularly important for word sense disambiguation (e.g., Yarowsky, 1995).
These methods will be discussed in chapter 5. Unsupervised methods typically lean on
the heuristic of “one sense per discourse”, which means that a lemma will usually have
a single, consistent sense throughout any given document (Gale et al., 1992). Based on
this heuristic, we can propagate information from high-confidence instances to lower-
confidence instances in the same document (Yarowsky, 1995). Semi-supervised methods
combine labeled and unlabeled data, and are discussed in more detail in chapter 5.

4.3 Design decisions for text classification

Text classification involves a number of design decisions. In some cases, the design deci-
sion is clear from the mathematics: if you are using regularization, then a regularization
weight A must be chosen. Other decisions are more subtle, arising only in the low level
“plumbing” code that ingests and processes the raw data. Such decision can be surpris-
ingly consequential for classification accuracy.

4.3.1 Whatis a word?

The bag-of-words representation presupposes that extracting a vector of word counts
from text is unambiguous. But text documents are generally represented as a sequences of
characters (in an encoding such as ascii or unicode), and the conversion to bag-of-words
presupposes a definition of the “words” that are to be counted.
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Whitespace Isn’'t Ahab, Ahab? )

Treebank Is n't Ahab Ahab ? ;)
Tweet Isn't Ahab Ahab ? ;)

TokTok (Dehdari, 2014) Isn t Ahab , Ahab ? ; )

Figure 4.1: The output of four NLTK tokenizers, applied to the string Isn't Ahab, Ahab? ;)

Tokenization

The first subtask for constructing a bag-of-words vector is tokenization: converting the
text from a sequence of characters to a sequence of word!tokens. A simple approach is
to define a subset of characters as whitespace, and then split the text on these tokens.
However, whitespace-based tokenization is not ideal: we may want to split conjunctions
like isn’t and hyphenated phrases like prize-winning and half-asleep, and we likely want
to separate words from commas and periods that immediately follow them. At the same
time, it would be better not to split abbreviations like U.S. and Ph.D. In languages with
Roman scripts, tokenization is typically performed using regular expressions, with mod-
ules designed to handle each of these cases. For example, the NLTK package includes a
number of tokenizers (Loper and Bird, 2002); the outputs of four of the better-known tok-
enizers are shown in Figure 4.1. Social media researchers have found that emoticons and
other forms of orthographic variation pose new challenges for tokenization, leading to the
development of special purpose tokenizers to handle these phenomena (O’Connor et al.,
2010).

Tokenization is a language-specific problem, and each language poses unique chal-
lenges. For example, Chinese does not include spaces between words, nor any other
consistent orthographic markers of word boundaries. A “greedy” approach is to scan the
input for character substrings that are in a predefined lexicon. However, Xue et al. (2003)
notes that this can be ambiguous, since many character sequences could be segmented in
multiple ways. Instead, he trains a classifier to determine whether each Chinese character,
or hanzi, is a word boundary. More advanced sequence labeling methods for word seg-
mentation are discussed in § 8.4. Similar problems can occur in languages with alphabetic
scripts, such as German, which does not include whitespace in compound nouns, yield-
ing examples such as Freundschaftsbezeigungen (demonstration of friendship) and Dilet-
tantenaufdringlichkeiten (the importunities of dilettantes). As Twain (1997) argues, “These
things are not words, they are alphabetic processions.” Social media raises similar problems
for English and other languages, with hashtags such as #TrueLovelnFourWords requiring
decomposition for analysis (Brun and Roux, 2014).
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Original The Williams sisters are leaving this tennis centre
Porter stemmer the william  sister are leav thi tenni centr
Lancaster stemmer the william sist ar leav thi ten cent

WordNet lemmatizer The Williams sister are leaving this tennis centre

Figure 4.2: Sample outputs of the Porter (1980) and Lancaster (Paice, 1990) stemmers, and
the WORDNET lemmatizer

Text normalization

After splitting the text into tokens, the next question is which tokens are really distinct.
Is it necessary to distinguish great, Great, and GREAT? Sentence-initial capitalization may
be irrelevant to the classification task. Going further, the complete elimination of case
distinctions will result in a smaller vocabulary, and thus smaller feature vectors. However,
case distinctions might be relevant in some situations: for example, apple is a delicious
pie filling, while Apple is a company that specializes in proprietary dongles and power
adapters.

For Roman script, case conversion can be performed using unicode string libraries.
Many scripts do not have case distinctions (e.g., the Devanagari script used for South
Asian languages, the Thai alphabet, and Japanese kana), and case conversion for all scripts
may not be available in every programming environment. (Unicode support is an im-
portant distinction between Python’s versions 2 and 3, and is a good reason for mi-
grating to Python 3 if you have not already done so. Compare the output of the code
"\a 1\’hétel".upper () in the two language versions.)

Case conversion is a type of text normalization, which refers to string transforma-
tions that remove distinctions that are irrelevant to downstream applications (Sproat et al.,
2001). Other forms of normalization include the standardization of numbers (e.g., 1,000 to
1000) and dates (e.g., August 11, 2015 to 2015/11/08). Depending on the application, it may
even be worthwhile to convert all numbers and dates to special tokens, !NUM and ! DATE.
In social media, there are additional orthographic phenomena that may be normalized,
such as expressive lengthening, e.g., cooooool (Aw et al., 2006; Yang and Eisenstein, 2013).
Similarly, historical texts feature spelling variations that may need to be normalized to a
contemporary standard form (Baron and Rayson, 2008).

A more extreme form of normalization is to eliminate inflectional affixes, such as the
-ed and -s suffixes in English. On this view, whale, whales, and whaling all refer to the
same underlying concept, so they should be grouped into a single feature. A stemmer is
a program for eliminating affixes, usually by applying a series of regular expression sub-
stitutions. Character-based stemming algorithms are necessarily approximate, as shown
in Figure 4.2: the Lancaster stemmer incorrectly identifies -ers as an inflectional suffix of
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Pang and Lee Movie Reviews (English) MAC-Morpho Corpus (Brazilian Portuguese)
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(a) Movie review data in English (b) News articles in Brazilian Portuguese

Figure 4.3: Tradeoff between token coverage (y-axis) and vocabulary size, on the NLTK
movie review dataset, after sorting the vocabulary by decreasing frequency. The red
dashed lines indicate 80%, 90%, and 95% coverage.

sisters (by analogy to fix/fixers), and both stemmers incorrectly identify -s as a suffix of this
and Williams. Fortunately, even inaccurate stemming can improve bag-of-words classifi-
cation models, by merging related strings and thereby reducing the vocabulary size.

Accurately handling irregular orthography requires word-specific rules. Lemmatizers
are systems that identify the underlying lemma of a given wordform. They must avoid the
over-generalization errors of the stemmers in Figure 4.2, and also handle more complex
transformations, such as geese—goose. The output of the WordNet lemmatizer is shown in
the final line of Figure 4.2. Both stemming and lemmatization are language-specific: an
English stemmer or lemmatizer is of little use on a text written in another language. The
discipline of morphology relates to the study of word-internal structure, and is described
in more detail in § 9.1.2.

The value of normalization depends on the data and the task. Normalization re-
duces the size of the feature space, which can help in generalization. However, there
is always the risk of merging away linguistically meaningful distinctions. In supervised
machine learning, regularization and smoothing can play a similar role to normalization
— preventing the learner from overfitting to rare features — while avoiding the language-
specific engineering required for accurate normalization. In unsupervised scenarios, such
as content-based information retrieval (Manning et al., 2008) and topic modeling (Blei
et al., 2003), normalization is more critical.

4.3.2 How many words?

Limiting the size of the feature vector reduces the memory footprint of the resulting mod-
els, and increases the speed of prediction. Normalization can help to play this role, but
a more direct approach is simply to limit the vocabulary to the N most frequent words
in the dataset. For example, in the MOVIE-REVIEWS dataset provided with NLTK (origi-
nally from Pang et al., 2002), there are 39,768 word types, and 1.58M tokens. As shown
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in Figure 4.3a, the most frequent 4000 word types cover 90% of all tokens, offering an
order-of-magnitude reduction in the model size. Such ratios are language-specific: in for
example, in the Brazilian Portuguese Mac-Morpho corpus (Aluisio et al., 2003), attain-
ing 90% coverage requires more than 10000 word types (Figure 4.3b). This reflects the
morphological complexity of Portuguese, which includes many more inflectional suffixes
than English.

Eliminating rare words is not always advantageous for classification performance: for
example, names, which are typically rare, play a large role in distinguishing topics of news
articles. Another way to reduce the size of the feature space is to eliminate stopwords such
as the, to, and and, which may seem to play little role in expressing the topic, sentiment,
or stance. This is typically done by creating a stoplist (e.g., NLTK.CORPUS.STOPWORDS),
and then ignoring all terms that match the list. However, corpus linguists and social psy-
chologists have shown that seemingly inconsequential words can offer surprising insights
about the author or nature of the text (Biber, 1991; Chung and Pennebaker, 2007). Further-
more, high-frequency words are unlikely to cause overfitting in discriminative classifiers.
As with normalization, stopword filtering is more important for unsupervised problems,
such as term-based document retrieval.

Another alternative for controlling model size is feature hashing (Weinberger et al.,
2009). Each feature is assigned an index using a hash function. If a hash function that
permits collisions is chosen (typically by taking the hash output modulo some integer),
then the model can be made arbitrarily small, as multiple features share a single weight.
Because most features are rare, accuracy is surprisingly robust to such collisions (Ganchev
and Dredze, 2008).

4.3.3 Count or binary?

Finally, we may consider whether we want our feature vector to include the count of each
word, or its presence. This gets at a subtle limitation of linear classification: it's worse to
have two failures than one, but is it really twice as bad? Motivated by this intuition, Pang
et al. (2002) use binary indicators of presence or absence in the feature vector: f;(x,y) €
{0, 1}. They find that classifiers trained on these binary vectors tend to outperform feature
vectors based on word counts. One explanation is that words tend to appear in clumps:
if a word has appeared once in a document, it is likely to appear again (Church, 2000).
These subsequent appearances can be attributed to this tendency towards repetition, and
thus provide little additional information about the class label of the document.

4.4 Evaluating classifiers

In any supervised machine learning application, it is critical to reserve a held-out test set.
This data should be used for only one purpose: to evaluate the overall accuracy of a single
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classifier. Using this data more than once would cause the estimated accuracy to be overly
optimistic, because the classifier would be customized to this data, and would not perform
as well as on unseen data in the future. It is usually necessary to set hyperparameters or
perform feature selection, so you may need to construct a tuning or development set for
this purpose, as discussed in § 2.2.5.

There are a number of ways to evaluate classifier performance. The simplest is accu-
racy: the number of correct predictions, divided by the total number of instances,

acc(y,y) Z I(y\" =9). [4.4]

Exams are usually graded by accuracy. Why are other metrics necessary? The main
reason is class imbalance. Suppose you are building a classifier to detect whether an
electronic health record (EHR) describes symptoms of a rare disease, which appears in
only 1% of all documents in the dataset. A classifier that reports § = NEGATIVE for
all documents would achieve 99% accuracy, but would be practically useless. We need
metrics that are capable of detecting the classifier’s ability to discriminate between classes,
even when the distribution is skewed.

One solution is to build a balanced test set, in which each possible label is equally rep-
resented. But in the EHR example, this would mean throwing away 98% of the original
dataset! Furthermore, the detection threshold itself might be a design consideration: in
health-related applications, we might prefer a very sensitive classifier, which returned a
positive prediction if there is even a small chance that y(?) = POSITIVE. In other applica-
tions, a positive result might trigger a costly action, so we would prefer a classifier that
only makes positive predictions when absolutely certain. We need additional metrics to
capture these characteristics.

4.4.1 Precision, recall, and F-MEASURE

For any label (e.g., positive for presence of symptoms of a disease), there are two possible
errors:

e False positive: the system incorrectly predicts the label.

e False negative: the system incorrectly fails to predict the label.
Similarly, for any label, there are two ways to be correct:

e True positive: the system correctly predicts the label.

e True negative: the system correctly predicts that the label does not apply to this
instance.
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Classifiers that make a lot of false positives have low precision: they predict the label
even when it isn’t there. Classifiers that make a lot of false negatives have low recall: they
fail to predict the label, even when it is there. These metrics distinguish these two sources
of error, and are defined formally as:

R TP
PRECISION(y, 4, k) P [4.6]
YY) =1p T Fp :

Recall and precision are both conditional likelihoods of a correct prediction, which is why
their numerators are the same. Recall is conditioned on k being the correct label, 4 = F,
so the denominator sums over true positive and false negatives. Precision is conditioned
on k being the prediction, so the denominator sums over true positives and false positives.
Note that true negatives are not considered in either statistic. The classifier that labels
every document as “negative” would achieve zero recall; precision would be .

Recall and precision are complementary. A high-recall classifier is preferred when
false positives are cheaper than false negatives: for example, in a preliminary screening
for symptoms of a disease, the cost of a false positive might be an additional test, while a
false negative would result in the disease going untreated. Conversely, a high-precision
classifier is preferred when false positives are more expensive: for example, in spam de-
tection, a false negative is a relatively minor inconvenience, while a false positive might
mean that an important message goes unread.

The F-MEASURE combines recall and precision into a single metric, using the har-
monic mean:

_ 2rp
r+p’

F-MEASURE(y, 4, k) [4.7]

where 7 is recall and p is precision.®

Evaluating multi-class classification Recall, precision, and F-MEASURE are defined with
respect to a specific label k. When there are multiple labels of interest (e.g., in word sense
disambiguation or emotion classification), it is necessary to combine the F-MEASURE
across each class. Macro F'-MEASURE is the average F'-MEASURE across several classes,

. 1 .
Macro-F(y, §) =I5 )~ F-MEASURE(y, §, k) [4.8]
kel
® F-MEASURE is sometimes called F;, and generalizes to Fjg = ‘g;f%. The 3 parameter can be tuned to

emphasize recall or precision.
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Figure 4.4: ROC curves for three classifiers of varying discriminative power, measured by
AUC (area under the curve)

In multi-class problems with unbalanced class distributions, the macro F'-MEASURE is a
balanced measure of how well the classifier recognizes each class. In micro F'-MEASURE,
we compute true positives, false positives, and false negatives for each class, and then add
them up to compute a single recall, precision, and F'-MEASURE. This metric is balanced
across instances rather than classes, so it weights each class in proportion to its frequency
— unlike macro F-MEASURE, which weights each class equally.

4.4.2 Threshold-free metrics

In binary classification problems, it is possible to trade off between recall and precision by
adding a constant “threshold” to the output of the scoring function. This makes it possible
to trace out a curve, where each point indicates the performance at a single threshold. In
the receiver operating characteristic (ROC) curve,” the z-axis indicates the false positive
rate, FPiiPTN, and the y-axis indicates the recall, or true positive rate. A perfect classifier
attains perfect recall without any false positives, tracing a “curve” from the origin (0,0) to
the upper left corner (0,1), and then to (1,1). In expectation, a non-discriminative classifier
traces a diagonal line from the origin (0,0) to the upper right corner (1,1). Real classifiers

tend to fall between these two extremes. Examples are shown in Figure 4.4.

The ROC curve can be summarized in a single number by taking its integral, the area
under the curve (AUC). The AUC can be interpreted as the probability that a randomly-
selected positive example will be assigned a higher score by the classifier than a randomly-

"The name “receiver operator characteristic” comes from the metric’s origin in signal processing applica-
tions (Peterson et al., 1954). Other threshold-free metrics include precision-recall curves, precision-at-k, and
balanced F'-MEASURE; see Manning et al. (2008) for more details.
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selected negative example. A perfect classifier has AUC = 1 (all positive examples score
higher than all negative examples); a non-discriminative classifier has AUC = 0.5 (given
a randomly selected positive and negative example, either could score higher with equal
probability); a perfectly wrong classifier would have AUC = 0 (all negative examples score
higher than all positive examples). One advantage of AUC in comparison to F'-MEASURE
is that the baseline rate of 0.5 does not depend on the label distribution.

4.4.3 Classifier comparison and statistical significance

Natural language processing research and engineering often involves comparing different
classification techniques. In some cases, the comparison is between algorithms, such as
logistic regression versus averaged perceptron, or L, regularization versus L. In other
cases, the comparison is between feature sets, such as the bag-of-words versus positional
bag-of-words (see § 4.2.2). Ablation testing involves systematically removing (ablating)
various aspects of the classifier, such as feature groups, and testing the null hypothesis
that the ablated classifier is as good as the full model.

A full treatment of hypothesis testing is beyond the scope of this text, but this section
contains a brief summary of the techniques necessary to compare classifiers. The main
aim of hypothesis testing is to determine whether the difference between two statistics
— for example, the accuracies of two classifiers — is likely to arise by chance. We will
be concerned with chance fluctuations that arise due to the finite size of the test set.> An
improvement of 10% on a test set with ten instances may reflect a random fluctuation that
makes the test set more favorable to classifier ¢; than co; on another test set with a different
ten instances, we might find that ¢, does better than ¢;. But if we observe the same 10%
improvement on a test set with 1000 instances, this is highly unlikely to be explained
by chance. Such a finding is said to be statistically significant at a level p, which is the
probability of observing an effect of equal or greater magnitude when the null hypothesis
is true. The notation p < .05 indicates that the likelihood of an equal or greater effect is
less than 5%, assuming the null hypothesis is true.’

The binomial test

The statistical significance of a difference in accuracy can be evaluated using classical tests,
such as the binomial test.1? Suppose that classifiers c¢; and c; disagree on N instances in a

80ther sources of variance include the initialization of non-convex classifiers such as neural networks,
and the ordering of instances in online learning such as stochastic gradient descent and perceptron.

“Statistical hypothesis testing is useful only to the extent that the existing test set is representative of
the instances that will be encountered in the future. If, for example, the test set is constructed from news
documents, no hypothesis test can predict which classifier will perform best on documents from another
domain, such as electronic health records.

10 A well-known alternative to the binomial test is McNemar’s test, which computes a test statistic based
on the number of examples that are correctly classified by one system and incorrectly classified by the other.
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Figure 4.5: Probability mass function for the binomial distribution. The pink highlighted
areas represent the cumulative probability for a significance test on an observation of
k =10and N = 30.

test set with binary labels, and that c; is correct on k of those instances. Under the null hy-
pothesis that the classifiers are equally accurate, we would expect k/N to be roughly equal
to 1/2,and as N increases, k/N should be increasingly close to this expected value. These
properties are captured by the binomial distribution, which is a probability over counts
of binary random variables. We write £ ~ Binom(#, N) to indicate that k is drawn from
a binomial distribution, with parameter IV indicating the number of random “draws”,
and 6 indicating the probability of “success” on each draw. Each draw is an example on
which the two classifiers disagree, and a “success” is a case in which ¢; is right and ¢ is
wrong. (The label space is assumed to be binary, so if the classifiers disagree, exactly one
of them is correct. The test can be generalized to multi-class classification by focusing on
the examples in which exactly one classifier is correct.)

The probability mass function (PMF) of the binomial distribution is,
k:N.O) = N 9k Y N—k 4
pBinom( [ ) - L (1 ) ) [ 9]

with 6% representing the probability of the k successes, (1 — §)V~* representing the prob-
ability of the N — k unsuccessful draws. The expression (]Z ) = m is a binomial
coefficient, representing the number of possible orderings of events; this ensures that the

distribution sums to one overall k € {0,1,2,...,N}.

Under the null hypothesis, when the classifiers disagree, each classifier is equally
likely to be right, so § = 3. Now suppose that among N disagreements, c; is correct
k< % times. The probability of c¢; being correct k or fewer times is the one-tailed p-value,

The null hypothesis distribution for this test statistic is known to be drawn from a chi-squared distribution
with a single degree of freedom, so a p-value can be computed from the cumulative density function of this
distribution (Dietterich, 1998). Both tests give similar results in most circumstances, but the binomial test is
easier to understand from first principles.
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because it is computed from the area under the binomial probability mass function from
0 to k, as shown in the left tail of Figure 4.5. This cumulative probability is computed as
a sum over all values i < k,

k
) ) a0y <N = L) — N
Pr <cour1’c(y2 =y 7,) <k;N,0 = 2) —;p&nom <z,N,9 = 2) : [4.10]

Binom

The one-tailed p-value applies only to the asymmetric null hypothesis that c; is at least
as accurate as cz. To test the two-tailed null hypothesis that ¢; and c; are equally accu-
rate, we would take the sum of one-tailed p-values, where the second term is computed
from the right tail of Figure 4.5. The binomial distribution is symmetric, so this can be
computed by simply doubling the one-tailed p-value.

Two-tailed tests are more stringent, but they are necessary in cases in which there is
no prior intuition about whether c¢; or c; is better. For example, in comparing logistic
regression versus averaged perceptron, a two-tailed test is appropriate. In an ablation
test, co may contain a superset of the features available to ¢;. If the additional features are
thought to be likely to improve performance, then a one-tailed test would be appropriate,
if chosen in advance. However, such a test can only prove that c¢; is more accurate than
c1, and not the reverse.

*Randomized testing

The binomial test is appropriate for accuracy, but not for more complex metrics such as
F-MEASURE. To compute statistical significance for arbitrary metrics, we can apply ran-
domization. Specifically, draw a set of M bootstrap samples (Efron and Tibshirani, 1993),
by resampling instances from the original test set with replacement. Each bootstrap sam-
ple is itself a test set of size N. Some instances from the original test set will not appear
in any given bootstrap sample, while others will appear multiple times; but overall, the
sample will be drawn from the same distribution as the original test set. We can then com-
pute any desired evaluation on each bootstrap sample, which gives a distribution over the
value of the metric. Algorithm 7 shows how to perform this computation.

To compare the F'-MEASURE of two classifiers ¢; and ¢y, we set the function §(-) to
compute the difference in F-MEASURE on the bootstrap sample. If the difference is less
than or equal to zero in at least 5% of the samples, then we cannot reject the one-tailed
null hypothesis that c; is at least as good as ¢; (Berg-Kirkpatrick et al., 2012). We may
also be interested in the 95% confidence interval around a metric of interest, such as
the F'-MEASURE of a single classifier. This can be computed by sorting the output of
Algorithm 7, and then setting the top and bottom of the 95% confidence interval to the
values at the 2.5% and 97.5% percentiles of the sorted outputs. Alternatively, you can fit
a normal distribution to the set of differences across bootstrap samples, and compute a
Gaussian confidence interval from the mean and variance.
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Algorithm 7 Bootstrap sampling for classifier evaluation. The original test set is
{x(:N) (N} the metric is §(-), and the number of samples is M.

procedure BOOTSTRAP-SAMPLE(z(1'N), (V) [5(.), M)
fort e {1,2,...,M} do
fori € {1,2,...,N} do
Jj ~ UniformInteger(1, V)
71 p0)
@  yO)
d(t) . 5(53(1:N)’,g(1:N))
return {dV}M,

As the number of bootstrap samples goes to infinity, M/ — oo, the bootstrap estimate
is increasingly accurate. A typical choice for M is 10? or 10°; larger numbers of samples
are necessary for smaller p-values. One way to validate your choice of M is to run the test
multiple times, and ensure that the p-values are similar; if not, increase M by an order of
magnitude. This is a heuristic measure of the variance of the test, which can decreases
with the square root v'M (Robert and Casella, 2013).

4.4.4 *Multiple comparisons

Sometimes it is necessary to perform multiple hypothesis tests, such as when compar-

ing the performance of several classifiers on multiple datasets. Suppose you have five

datasets, and you compare four versions of your classifier against a baseline system, for a

total of 20 comparisons. Even if none of your classifiers is better than the baseline, there

will be some chance variation in the results, and in expectation you will get one statis-
1

tically significant improvement at p = 0.05 = 5. It is therefore necessary to adjust the

p-values when reporting the results of multiple comparisons.

One approach is to require a threshold of - to report a p value of p < a when per-
forming m tests. This is known as the Bonferroni correction, and it limits the overall
probability of incorrectly rejecting the null hypothesis at a. Another approach is to bound
the false discovery rate (FDR), which is the fraction of null hypothesis rejections that are
incorrect. Benjamini and Hochberg (1995) propose a p-value correction that bounds the
fraction of false discoveries at a: sort the p-values of each individual test in ascending
order, and set the significance threshold equal to largest k such that p;, < %a. If £ > 1, the
FDR adjustment is more permissive than the Bonferroni correction.
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4.5 Building datasets

Sometimes, if you want to build a classifier, you must first build a dataset of your own.
This includes selecting a set of documents or instances to annotate, and then performing
the annotations. The scope of the dataset may be determined by the application: if you
want to build a system to classify electronic health records, then you must work with a
corpus of records of the type that your classifier will encounter when deployed. In other
cases, the goal is to build a system that will work across a broad range of documents. In
this case, it is best to have a balanced corpus, with contributions from many styles and
genres. For example, the Brown corpus draws from texts ranging from government doc-
uments to romance novels (Francis, 1964), and the Google Web Treebank includes an-
notations for five “domains” of web documents: question answers, emails, newsgroups,
reviews, and blogs (Petrov and McDonald, 2012).

4.5.1 Metadata as labels

Annotation is difficult and time-consuming, and most people would rather avoid it. It
is sometimes possible to exploit existing metadata to obtain labels for training a classi-
fier. For example, reviews are often accompanied by a numerical rating, which can be
converted into a classification label (see § 4.1). Similarly, the nationalities of social media
users can be estimated from their profiles (Dredze et al., 2013) or even the time zones of
their posts (Gouws et al., 2011). More ambitiously, we may try to classify the political af-
filiations of social media profiles based on their social network connections to politicians
and major political parties (Rao et al., 2010).

The convenience of quickly constructing large labeled datasets without manual an-
notation is appealing. However this approach relies on the assumption that unlabeled
instances — for which metadata is unavailable — will be similar to labeled instances.
Consider the example of labeling the political affiliation of social media users based on
their network ties to politicians. If a classifier attains high accuracy on such a test set,
is it safe to assume that it accurately predicts the political affiliation of all social media
users? Probably not. Social media users who establish social network ties to politicians
may be more likely to mention politics in the text of their messages, as compared to the
average user, for whom no political metadata is available. If so, the accuracy on a test set
constructed from social network metadata would give an overly optimistic picture of the
method’s true performance on unlabeled data.

4.5.2 Labeling data

In many cases, there is no way to get ground truth labels other than manual annotation.
An annotation protocol should satisfy several criteria: the annotations should be expressive
enough to capture the phenomenon of interest; they should be replicable, meaning that
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another annotator or team of annotators would produce very similar annotations if given
the same data; and they should be scalable, so that they can be produced relatively quickly.
Hovy and Lavid (2010) propose a structured procedure for obtaining annotations that
meet these criteria, which is summarized below.

1. Determine what to annotate. This is usually based on some theory of the under-
lying phenomenon: for example, if the goal is to produce annotations about the
emotional state of a document’s author, one should start with a theoretical account
of the types or dimensions of emotion (e.g., Mohammad and Turney, 2013). At this
stage, the tradeoff between expressiveness and scalability should be considered: a
full instantiation of the underlying theory might be too costly to annotate at scale,
so reasonable approximations should be considered.

2. Optionally, one may design or select a software tool to support the annotation
effort. Existing general-purpose annotation tools include BRAT (Stenetorp et al.,
2012) and MMAX2 (Miiller and Strube, 2006).

3. Formalize the instructions for the annotation task. To the extent that the instruc-
tions are not explicit, the resulting annotations will depend on the intuitions of the
annotators. These intuitions may not be shared by other annotators, or by the users
of the annotated data. Therefore explicit instructions are critical to ensuring the an-
notations are replicable and usable by other researchers.

4. Perform a pilot annotation of a small subset of data, with multiple annotators for
each instance. This will give a preliminary assessment of both the replicability and
scalability of the current annotation instructions. Metrics for computing the rate of
agreement are described below. Manual analysis of specific disagreements should
help to clarify the instructions, and may lead to modifications of the annotation task
itself. For example, if two labels are commonly conflated by annotators, it may be
best to merge them.

5. Annotate the data. After finalizing the annotation protocol and instructions, the
main annotation effort can begin. Some, if not all, of the instances should receive
multiple annotations, so that inter-annotator agreement can be computed. In some
annotation projects, instances receive many annotations, which are then aggregated
into a “consensus” label (e.g., Danescu-Niculescu-Mizil et al., 2013). However, if the
annotations are time-consuming or require significant expertise, it may be preferable
to maximize scalability by obtaining multiple annotations for only a small subset of
examples.

6. Compute and report inter-annotator agreement, and release the data. In some
cases, the raw text data cannot be released, due to concerns related to copyright or

Under contract with MIT Press, shared under CC-BY-NC-ND license.



90 CHAPTER 4. LINGUISTIC APPLICATIONS OF CLASSIFICATION

privacy. In these cases, one solution is to publicly release stand-off annotations,
which contain links to document identifiers. The documents themselves can be re-
leased under the terms of a licensing agreement, which can impose conditions on
how the data is used. It is important to think through the potential consequences of
releasing data: people may make personal data publicly available without realizing
that it could be redistributed in a dataset and publicized far beyond their expecta-
tions (boyd and Crawford, 2012).

Measuring inter-annotator agreement

To measure the replicability of annotations, a standard practice is to compute the extent to
which annotators agree with each other. If the annotators frequently disagree, this casts
doubt on either their reliability or on the annotation system itself. For classification, one
can compute the frequency with which the annotators agree; for rating scales, one can
compute the average distance between ratings. These raw agreement statistics must then
be compared with the rate of agreement by chance — the expected level of agreement that
would be obtained between two annotators who ignored the data.

Cohen’s Kappa is widely used for quantifying the agreement on discrete labeling
tasks (Cohen, 1960; Carletta, 1996),11

_ agreement — E|agreement]

1 — Elagreement] [4.11]
The numerator is the difference between the observed agreement and the chance agree-
ment, and the denominator is the difference between perfect agreement and chance agree-
ment. Thus, £ = 1 when the annotators agree in every case, and x = 0 when the annota-
tors agree only as often as would happen by chance. Various heuristic scales have been
proposed for determining when « indicates “moderate”, “good”, or “substantial” agree-
ment; for reference, Lee and Narayanan (2005) report x ~ 0.45 — 0.47 for annotations
of emotions in spoken dialogues, which they describe as “moderate agreement”; Stolcke
et al. (2000) report x = 0.8 for annotations of dialogue acts, which are labels for the pur-

pose of each turn in a conversation.

When there are two annotators, the expected chance agreement is computed as,

Elagreement| = Z Pr(Y = k)%, [4.12]
k

where £ is a sum over labels, and Pr(Y = k) is the empirical probability of label k across
all annotations. The formula is derived from the expected number of agreements if the
annotations were randomly shuffled. Thus, in a binary labeling task, if one label is applied
to 90% of instances, chance agreement is .92 + .12 = .82.

" For other types of annotations, Krippendorf’s alpha is a popular choice (Hayes and Krippendorff, 2007;
Artstein and Poesio, 2008).
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Crowdsourcing

Crowdsourcing is often used to rapidly obtain annotations for classification problems.
For example, Amazon Mechanical Turk makes it possible to define “human intelligence
tasks (hits)”, such as labeling data. The researcher sets a price for each set of annotations
and a list of minimal qualifications for annotators, such as their native language and their
satisfaction rate on previous tasks. The use of relatively untrained “crowdworkers” con-
trasts with earlier annotation efforts, which relied on professional linguists (Marcus et al.,
1993). However, crowdsourcing has been found to produce reliable annotations for many
language-related tasks (Snow et al., 2008). Crowdsourcing is part of the broader field
of human computation (Law and Ahn, 2011).For a critical examination of ethical issues
related to crowdsourcing, see Fort et al. (2011).

Additional resources

Many of the preprocessing issues discussed in this chapter also arise in information re-
trieval. See Manning et al. (2008) for discussion of tokenization and related algorithms.
For more on hypothesis testing in particular and replicability in general, see (Dror et al.,
2017, 2018).

Exercises

1. As noted in § 4.3.3, words tend to appear in clumps, with subsequent occurrences
of a word being more probable. More concretely, if word j has probability ¢, ;
of appearing in a document with label y, then the probability of two appearances
(:z;gl) = 2) is greater than ¢12/,j'

Suppose you are applying Naive Bayes to a binary classification. Focus on a word j
which is more probable under label y = 1, so that,

Prlw=jly=1)>Pr(w=j]y=0). [4.13]

Now suppose that x;i) > 1. All else equal, will the classifier overestimate or under-

estimate the posterior Pr(y =1 | x)?

2. Prove that F-measure is never greater than the arithmetic mean of recall and preci-
sion, “Z2. Your solution should also show that F-measure is equal to "2 iff r = p.

3. Given a binary classification problem in which the probability of the “positive” label
is equal to a, what is the expected F'-MEASURE of a random classifier which ignores
the data, and selects §j = +1 with probability ? (Assume that p(j)Lp(y).) What is
the expected F'-MEASURE of a classifier that selects § = +1 with probability « (also
independent of y(¥)? Depending on a, which random classifier will score better?
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4. Suppose that binary classifiers c¢; and c; disagree on N = 30 cases, and that ¢, is
correct in k = 10 of those cases.

e Write a program that uses primitive functions such as exp and factorial to com-
pute the two-tailed p-value — you may use an implementation of the “choose”
function if one is avaiable. Verify your code against the output of a library for
computing the binomial test or the binomial CDF, such as SCIPY.STATS.BINOM
in Python.

e Then use a randomized test to try to obtain the same p-value. In each sample,
draw from a binomial distribution with N = 30 and = 3. Count the fraction
of samples in which £ < 10. This is the one-tailed p-value; double this to
compute the two-tailed p-value.

e Try this with varying numbers of bootstrap samples: M < {100, 1000, 5000, 10000}.
For M = 100 and M = 1000, run the test 10 times, and plot the resulting p-
values.

e Finally, perform the same tests for N = 70 and k = 25.

5. SemCor 3.0 is a labeled dataset for word sense disambiguation. You can download
it,12 or access it in NLTK.CORPORA.SEMCOR.

Choose a word that appears at least ten times in SemCor (find), and annotate its
WordNet senses across ten randomly-selected examples, without looking at the ground
truth. Use online WordNet to understand the definition of each of the senses.!® Have

a partner do the same annotations, and compute the raw rate of agreement, expected
chance rate of agreement, and Cohen’s kappa.

6. Download the Pang and Lee movie review data, currently available from http:
//www.cs.cornell.edu/people/pabo/movie-review—data/. Hold out a
randomly-selected 400 reviews as a test set.

Download a sentiment lexicon, such as the one currently available from Bing Liu,
https://www.cs.uic.edu/~1iub/FBS/sentiment-analysis.html. Tokenize
the data, and classify each document as positive iff it has more positive sentiment
words than negative sentiment words. Compute the accuracy and F-MEASURE on
detecting positive reviews on the test set, using this lexicon-based classifier.

Then train a discriminative classifier (averaged perceptron or logistic regression) on
the training set, and compute its accuracy and F-MEASURE on the test set.

Determine whether the differences are statistically significant, using two-tailed hy-
pothesis tests: Binomial for the difference in accuracy, and bootstrap for the differ-
ence in macro-/'-MEASURE.

12e.g., https://github.com/google-research-datasets/word_sense_disambigation_
corporaor http://globalwordnet.org/wordnet—annotated-corpora/
13h’ct-p: / /wordnetweb.princeton.edu/perl/webwn
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The remaining problems will require you to build a classifier and test its properties. Pick
a multi-class text classification dataset that is not already tokenized. One example is a
dataset of New York Times headlines and topics (Boydstun, 2013).1* Divide your data
into training (60%), development (20%), and test sets (20%), if no such division already
exists. If your dataset is very large, you may want to focus on a few thousand instances at
first.

7. Compare various vocabulary sizes of 102, 10%, 10%, 10°, using the most frequent words
in each case (you may use any reasonable tokenizer). Train logistic regression clas-
sifiers for each vocabulary size, and apply them to the development set. Plot the
accuracy and Macro-F-MEASURE with the increasing vocabulary size. For each vo-
cabulary size, tune the regularizer to maximize accuracy on a subset of data that is
held out from the training set.

8. Compare the following tokenization algorithms:

e Whitespace, using a regular expression;
e The Penn Treebank tokenizer from NLTK;

e Splitting the input into non-overlapping five-character units, regardless of whites-
pace or punctuation.

Compute the token/type ratio for each tokenizer on the training data, and explain
what you find. Train your classifier on each tokenized dataset, tuning the regularizer
on a subset of data that is held out from the training data. Tokenize the development
set, and report accuracy and Macro-F'-MEASURE.

9. Apply the Porter and Lancaster stemmers to the training set, using any reasonable
tokenizer, and compute the token/type ratios. Train your classifier on the stemmed
data, and compute the accuracy and Macro-F-MEASURE on stemmed development
data, again using a held-out portion of the training data to tune the regularizer.

10. Identify the best combination of vocabulary filtering, tokenization, and stemming
from the previous three problems. Apply this preprocessing to the test set, and
compute the test set accuracy and Macro-F-MEASURE. Compare against a baseline
system that applies no vocabulary filtering, whitespace tokenization, and no stem-
ming.

Use the binomial test to determine whether your best-performing system is signifi-
cantly more accurate than the baseline.

% Available as a Csv file at http://www.amber-boydstun.com/
supplementary-information—-for-making-the-news.html. Use the field TOPIC_2DIGIT for
this problem.
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Use the bootstrap test with M = 10* to determine whether your best-performing
system achieves significantly higher macro-F/'-MEASURE.

Jacob Eisenstein. Draft of November 13, 2018.



Chapter 5

Learning without supervision

So far, we have assumed the following setup:

e a training set where you get observations « and labels y;

e a test set where you only get observations x.

Without labeled data, is it possible to learn anything? This scenario is known as unsu-
pervised learning, and we will see that indeed it is possible to learn about the underlying
structure of unlabeled observations. This chapter will also explore some related scenarios:
semi-supervised learning, in which only some instances are labeled, and domain adap-
tation, in which the training data differs from the data on which the trained system will
be deployed.

5.1 Unsupervised learning

To motivate unsupervised learning, consider the problem of word sense disambiguation
(§4.2). The goal is to classify each instance of a word, such as bank into a sense,

e bank#1: a financial institution

e bank#2: the land bordering a river

It is difficult to obtain sufficient training data for word sense disambiguation, because
even a large corpus will contain only a few instances of all but the most common words.
Is it possible to learn anything about these different senses without labeled data?

Word sense disambiguation is usually performed using feature vectors constructed
from the local context of the word to be disambiguated. For example, for the word
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Figure 5.1: Counts of words from two different context groups

bank, the immediate context might typically include words from one of the following two
groups:

1. financial, deposits, credit, lending, capital, markets, requlated, reserve, liquid, assets

2. land, water, geography, stream, river, flow, deposits, discharge, channel, ecology

Now consider a scatterplot, in which each point is a document containing the word bank.
The location of the document on the z-axis is the count of words in group 1, and the
location on the y-axis is the count for group 2. In such a plot, shown in Figure 5.1, two
“blobs” might emerge, and these blobs correspond to the different senses of bank.

Here’s a related scenario, from a different problem. Suppose you download thousands
of news articles, and make a scatterplot, where each point corresponds to a document:
the z-axis is the frequency of the group of words (hurricane, winds, storm); the y-axis is the
frequency of the group (election, voters, vote). This time, three blobs might emerge: one
for documents that are largely about a hurricane, another for documents largely about a
election, and a third for documents about neither topic.

These clumps represent the underlying structure of the data. But the two-dimensional
scatter plots are based on groupings of context words, and in real scenarios these word
lists are unknown. Unsupervised learning applies the same basic idea, but in a high-
dimensional space with one dimension for every context word. This space can’t be di-
rectly visualized, but the goal is the same: try to identify the underlying structure of the
observed data, such that there are a few clusters of points, each of which is internally
coherent. Clustering algorithms are capable of finding such structure automatically.

5.1.1 K-means clustering

Clustering algorithms assign each data point to a discrete cluster, z; € 1,2,... K. One of
the best known clustering algorithms is K-means, an iterative algorithm that maintains
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Algorithm 8 K-means clustering algorithm

1: procedure K-MEANS(x;.n, K)

2 forice1...Ndo > initialize cluster memberships

3 2() « RANDOMINT(1, K)

4: repeat

5 forkel...Kdo > recompute cluster centers
N , .

6 Vi, <— m ZiZI 6(2(7/) = k)ﬁc(l)

7: foric1...Ndo > reassign instances to nearest clusters
8: 20 « argmin, ||z — v ||?
9: until converged

10: return {z()} > return cluster assignments

a cluster assignment for each instance, and a central (“mean”) location for each cluster.
K-means iterates between updates to the assignments and the centers:

1. each instance is placed in the cluster with the closest center;

2. each center is recomputed as the average over points in the cluster.

This procedure is formalized in Algorithm 8. The term ||z} — v||? refers to the squared

Euclidean norm, Z}/d(x;‘i) — v;)?. An important property of K-means is that the con-
verged solution depends on the initialization, and a better clustering can sometimes be

found simply by re-running the algorithm from a different random starting point.

Soft K-means is a particularly relevant variant. Instead of directly assigning each
point to a specific cluster, soft K-means assigns to each point a distribution over clusters
q", so that S, ¢ (k) = 1, and Vy, ¢ (k) > 0. The soft weight ¢ (k) is computed from
the distance of (9 to the cluster center vy. In turn, the center of each cluster is computed
from a weighted average of the points in the cluster,

1 . ,
_ (4) (4)
v = , E gV (k)x'. [5.1]
Zi]\il q(l)(k) i=1

We will now explore a probablistic version of soft K-means clustering, based on expectation-
maximization (EM). Because EM clustering can be derived as an approximation to maximum-
likelihood estimation, it can be extended in a number of useful ways.
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5.1.2 Expectation-Maximization (EM)

Expectation-maximization combines the idea of soft K-means with Naive Bayes classifi-
cation. To review, Naive Bayes defines a probability distribution over the data,

log p(x, y; ¢, Zlog( D1yD:6) x ply: ) 52]

Now suppose that you never observe the labels. To indicate this, we'll refer to the label
of each instance as z(, rather than y(i), which is usually reserved for observed variables.
By marginalizing over the latent variables z, we obtain the marginal probability of the
observed instances x:

log p( Z logp(x; p, 1) [5.3]
—ZlogZp ey [5.4]
—ZlogZp (@ | 2;) x p(z; ). [5.5]

The parameters ¢ and p can be obtained by maximizing the marginal likelihood in
Equation 5.5. Why is this the right thing to maximize? Without labels, discriminative
learning is impossible — there’s nothing to discriminate. So maximum likelihood is all
we have.

When the labels are observed, we can estimate the parameters of the Naive Bayes
probability model separately for each label. But marginalizing over the labels couples
these parameters, making direct optimization of logp(x) intractable. We will approxi-
mate the log-likelihood by introducing an auxiliary variable q(), which is a distribution
over the label set Z = {1,2,..., K}. The optimization procedure will alternate between
updates to ¢ and updates to the parameters (¢, ). Thus, q(V) plays here as in soft K-
means.

To derive the updates for this optimization, multiply the right side of Equation 5.5 by
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(@)
iy 19(2)
the ratio ) = 1,

log p(x ZlogZp )| 2;¢) x pl(z; 1) X [5.6]

x®
—Zlong )X P | 25 9) x plaim) X o [57]

= Z log E i)
i=1

where E ) [f(2)] = Zz 14D (2) x f(2) refers to the expectation of the function f under
the distribution z ~ ¢(¥.

p(x® | z;¢)p(2; p)
@)

) [5.8]

Jensen’s inequality says that because log is a concave function, we can push it inside
the expectation, and obtain a lower bound.

i (@) | . .
lng T, 1 > Z Eq(z) log P(w | (Zlv) ¢)p(za IJ‘) [59]
I q"(z)
JL Z Eyo [logp(@® | 2:) + logp(z; 1) — log ¢! () [5.10]
N r . .
=" Eyo [logp@?, 6. 1)| + H(a") [511]

We will focus on Equation 5.10, which is the lower bound on the marginal log-likelihood
of the observed data, logp(x). Equation 5.11 shows the connection to the information
theoretic concept of entropy, H(q) = — -5 | ¢()(2)log ¢ (), which measures the av-
erage amount of information produced by a draw from the distribution ¢(). The lower
bound J is a function of two groups of arguments:

e the distributions ¢ for each instance;

e the parameters p and ¢.

The expectation-maximization (EM) algorithm maximizes the bound with respect to each
of these arguments in turn, while holding the other fixed.

The E-step

The step in which we update ¢¥) is known as the E-step, because it updates the distribu-
tion under which the expectation is computed. To derive this update, first write out the
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expectation in the lower bound as a sum,

N K
T =33 a"() [logp(@? | 2 ¢) + logp(z: ) — loga V()| [5.12]

i=1 z=1

When optimizing this bound, we must also respect a set of “sum-to-one” constraints,
Zf: 1 ¢ (z) = 1 for all 4. Just as in Naive Bayes, this constraint can be incorporated into a
Lagrangian:

N K K
Jo =3 a"(z) (togp(@? | 25 ) +logp(zi ) ~ log g (2)) + XV (1 = 3 ¢(2)),
i=1 z=1 z=1
[5.13]
where A\ is the Lagrange multiplier for instance i.
The Lagrangian is maximized by taking the derivative and solving for q\:
8T]q =logp(z® | z; ¢) +logp(z;0) —log ¢V (z) — 1 — AD [5.14]
aq(l) (Z) ) )
logq"”(2) =logp(z”) | z;¢) +logp(z; 1) — 1 — AV [5.15]
¢ (z) op(@™ | z;0) x p(z; ). [5.16]
Applying the sum-to-one constraint gives an exact solution,
- x@ | z; ) x p(z;
Yo Pl | 25 ¢) x p(2's )
=p(z | 2"); ¢, ). [5.18]

After normalizing, each g — which is the soft distribution over clusters for data (Y —
is set to the posterior probability p(z | (V; ¢, ) under the current parameters. Although
the Lagrange multipliers A() were introduced as additional parameters, they drop out
during normalization.

The M-step

Next, we hold fixed the soft assignments q(*), and maximize with respect to the pa-
rameters, ¢ and p. Let’s focus on the parameter ¢, which parametrizes the likelihood
p(x | z; @), and leave p for an exercise. The parameter ¢ is a distribution over words for
each cluster, so it is optimized under the constraint that Z}/:l ¢.,; = 1. To incorporate this
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constraint, we introduce a set of Lagrange multiplers {\,}£ ,, and from the Lagrangian,

N K
:ZZ (bgp )| ;) + log p(2; 1) — log g )+ZA 1—2@7]

[5.19]

The term log p(x(®) | z; ¢) is the conditional log-likelihood for the multinomial, which
expands to,

v
logp(x® | z,¢) = C + ij log ¢ ;, [5.20]
j=1

where C'is a constant with respect to ¢ — see Equation 2.12 in § 2.2 for more discussion
of this probability function.

Setting the derivative of J,; equal to zero,

(%)

aJ. T;
3 ¢ Z q </> — A [5.21]
Z,] i—1 Z,j
¢2j X Z ¢ (2) x xgz) [5.22]
i=1

Because ¢, is constrained to be a probability distribution, the exact solution is computed
as,

i = Y qD(z) x xy) _ Kk [count(z, j)] (5.23]
YNy q0) x 2] X)) By [count(z, )

where the counter j € {1,2,...,V} indexes over base features, such as words.

This update sets ¢ equal to the relative frequency estimate of the expected counts under
the distribution q. As in supervised Naive Bayes, we can smooth these counts by adding
a constant o. The update for p is similar: p, o Zf\i 149 (2) = E, [count(z)], which is the
expected frequency of cluster z. These probabilities can also be smoothed. In sum, the
M-step is just like Naive Bayes, but with expected counts rather than observed counts.

The multinomial likelihood p(x | z) can be replaced with other probability distribu-
tions: for example, for continuous observations, a Gaussian distribution can be used. In
some cases, there is no closed-form update to the parameters of the likelihood. One ap-
proach is to run gradient-based optimization at each M-step; another is to simply take a
single step along the gradient step and then return to the E-step (Berg-Kirkpatrick et al.,
2010).
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Figure 5.2: Sensitivity of expectation-maximization to initialization. Each line shows the
progress of optimization from a different random initialization.

5.1.3 EM as an optimization algorithm

Algorithms that update a global objective by alternating between updates to subsets of the
parameters are called coordinate ascent algorithms. The objective J (the lower bound on
the marginal likelihood of the data) is separately convex in g and (u, ¢), but it is notjointly
convex in all terms; this condition is known as biconvexity. Each step of the expectation-
maximization algorithm is guaranteed not to decrease the lower bound .J, which means
that EM will converge towards a solution at which no nearby points yield further im-
provements. This solution is a local optimum — it is as good or better than any of its
immediate neighbors, but is not guaranteed to be optimal among all possible configura-
tions of (g, i, @).

The fact that there is no guarantee of global optimality means that initialization is
important: where you start can determine where you finish. To illustrate this point,
Figure 5.2 shows the objective function for EM with ten different random initializations:
while the objective function improves monotonically in each run, it converges to several
different values.! For the convex objectives that we encountered in chapter 2, it was not
necessary to worry about initialization, because gradient-based optimization guaranteed
to reach the global minimum. But in expectation-maximization — as in the deep neural
networks from chapter 3 — initialization matters.

In hard EM, each q*) distribution assigns probability of 1 to a single label 2(*), and zero
probability to all others (Neal and Hinton, 1998). This is similar in spirit to K-means clus-
tering, and can outperform standard EM in some cases (Spitkovsky et al., 2010). Another
variant of expectation-maximization incorporates stochastic gradient descent (SGD): after
performing a local E-step at each instance ("), we immediately make a gradient update
to the parameters (u, ¢). This algorithm has been called incremental expectation maxi-
mization (Neal and Hinton, 1998) and online expectation maximization (Sato and Ishii,

The figure shows the upper bound on the negative log-likelihood, because optimization is typically
framed as minimization rather than maximization.
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2000; Cappé and Moulines, 2009), and is especially useful when there is no closed-form
optimum for the likelihood p(x | z), and in online settings where new data is constantly
streamed in (see Liang and Klein, 2009, for a comparison for online EM variants).

5.1.4 How many clusters?

So far, we have assumed that the number of clusters K is given. In some cases, this as-
sumption is valid. For example, a lexical semantic resource like WORDNET might define
the number of senses for a word. In other cases, the number of clusters could be a parame-
ter for the user to tune: some readers want a coarse-grained clustering of news stories into
three or four clusters, while others want a fine-grained clustering into twenty or more. But
many times there is little extrinsic guidance for how to choose K.

One solution is to choose the number of clusters to maximize a metric of clustering
quality. The other parameters p and ¢ are chosen to maximize the log-likelihood bound
J, so this might seem a potential candidate for tuning K. However, J will never decrease
with K if it is possible to obtain a bound of Jx with K clusters, then it is always possible
to do at least as well with K + 1 clusters, by simply ignoring the additional cluster and
setting its probability to zero in g and p. It is therefore necessary to introduce a penalty
for model complexity, so that fewer clusters are preferred. For example, the Akaike Infor-
mation Crition (AIC; Akaike, 1974) is the linear combination of the number of parameters
and the log-likelihood,

AIC = 2M — 2, [5.24]

where M is the number of parameters. In an expectation-maximization clustering algo-
rithm, M = K x V + K. Since the number of parameters increases with the number of
clusters K, the AIC may prefer more parsimonious models, even if they do not fit the data
quite as well.

Another choice is to maximize the predictive likelihood on heldout data. This data
is not used to estimate the model parameters ¢ and p, and so it is not the case that the
likelihood on this data is guaranteed to increase with K. Figure 5.3 shows the negative
log-likelihood on training and heldout data, as well as the AIC.

*Bayesian nonparametrics An alternative approach is to treat the number of clusters
as another latent variable. This requires statistical inference over a set of models with a
variable number of clusters. This is not possible within the framework of expectation-
maximization, but there are several alternative inference procedures which can be ap-
plied, including Markov Chain Monte Carlo (MCMC), which is briefly discussed in
§ 5.5 (for more details, see Chapter 25 of Murphy, 2012). Bayesian nonparametrics have
been applied to the problem of unsupervised word sense induction, learning not only the
word senses but also the number of senses per word (Reisinger and Mooney, 2010).
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Figure 53: The negative log-likelihood and AIC for several runs of expectation-
maximization, on synthetic data. Although the data was generated from a model with
K = 10, the optimal number of clusters is K = 15, according to AIC and the heldout
log-likelihood. The training set log-likelihood continues to improve as K increases.

5.2 Applications of expectation-maximization

EM is not really an “algorithm” like, say, quicksort. Rather, it is a framework for learning
with missing data. The recipe for using EM on a problem of interest is:

e Introduce latent variables z, such that it is easy to write the probability P(x, z). It
should also be easy to estimate the associated parameters, given knowledge of z.

e Derive the E-step updates for ¢(z), which is typically factored as ¢(z) = [, ¢, (z®),
where 7 is an index over instances.

e The M-step updates typically correspond to the soft version of a probabilistic super-
vised learning algorithm, like Naive Bayes.

This section discusses a few of the many applications of this general framework.

5.2.1 Word sense induction

The chapter began by considering the problem of word sense disambiguation when the
senses are not known in advance. Expectation-maximization can be applied to this prob-
lem by treating each cluster as a word sense. Each instance represents the use of an
ambiguous word, and x(%) is a vector of counts for the other words that appear nearby:
Schiitze (1998) uses all words within a 50-word window. The probability p(z( | z) can be
set to the multinomial distribution, as in Naive Bayes. The EM algorithm can be applied
directly to this data, yielding clusters that (hopefully) correspond to the word senses.

Better performance can be obtained by first applying singular value decomposition
(SVD) to the matrix of context-counts C;; = count(i, j), where count(s, j) is the count of
word j in the context of instance 7. Truncated singular value decomposition approximates
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the matrix C as a product of three matrices, U, S, V, under the constraint that U and V
are orthonormal, and S is diagonal:

: _ T
611811%/HC USV'||F [5.25]

stUeRVK UUT =1
S—Diag(sl,SQ,... )
VI eRVXE vvT =1,

where || - [ is the Frobenius norm, |[X|[p = />, ; X7 2 . The matrix U contains the

left singular vectors of C, and the rows of this matrix can be used as low-dimensional
representations of the count vectors ¢;. EM clustering can be made more robust by setting
the instance descriptions =) equal to these rows, rather than using raw counts (Schiitze,
1998). However, because the instances are now dense vectors of continuous numbers, the
probability p(x(?) | z) must be defined as a multivariate Gaussian distribution.

In truncated singular value decomposition, the hyperparameter K is the truncation
limit: when K is equal to the rank of C, the norm of the difference between the original
matrix C and its reconstruction USV " will be zero. Lower values of K increase the recon-
struction error, but yield vector representations that are smaller and easier to learn from.
Singular value decomposition is discussed in more detail in chapter 14.

5.2.2 Semi-supervised learning

Expectation-maximization can also be applied to the problem of semi-supervised learn-
ing: learning from both labeled and unlabeled data in a single model. Semi-supervised
learning makes use of annotated examples, ensuring that each label y corresponds to the
desired concept. By adding unlabeled examples, it is possible to cover a greater fraction of
the features than would appear in labeled data alone. Other methods for semi-supervised
learning are discussed in § 5.3, but for now, let’s approach the problem within the frame-
work of expectation-maximization (Nigam et al., 2000).

Suppose we have labeled data {(x?,5(®)} , and unlabeled data {x( }fi‘;{,{f\i‘l, where

Ny is the number of labeled instances and N, is the number of unlabeled instances. We can
learn from the combined data by maximizing a lower bound on the joint log-likelihood,

NZ ) ) N(Z+Nu )
£=Y logp@”,y"ip¢)+ > logpx;p, ¢) [5.26]
’ J=Ng+1

N¢+Ny

Ny
=Z<logp(w(“Iy(");¢)+logp(y(");u)>+ > logZP )y ¢).  [5.27]
=1

J=N¢+1 y=1
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Algorithm 9 Generative process for the Naive Bayes classifier with hidden components

for Instance i € {1,2,..., N} do:
Draw the label y(?) ~ Categorical(u);
Draw the component 20 ~ Categorical(ﬁy(i) );

Draw the word counts () | 4, 2() ~ Multinomial(¢, ).

The left sum is identical to the objective in Naive Bayes; the right sum is the marginal log-

likelihood for expectation-maximization clustering, from Equation 5.5. We can construct a

lower bound on this log-likelihood by introducing distributions q\%) forall j € {N, +1,..., N, + N,}.
The E-step updates these distributions; the M-step updates the parameters ¢ and p, us-

ing the expected counts from the unlabeled data and the observed counts from the labeled

data.

A critical issue in semi-supervised learning is how to balance the impact of the labeled
and unlabeled data on the classifier weights, especially when the unlabeled data is much
larger than the labeled dataset. The risk is that the unlabeled data will dominate, caus-
ing the parameters to drift towards a “natural clustering” of the instances — which may
not correspond to a good classifier for the labeled data. One solution is to heuristically
reweight the two components of Equation 5.26, tuning the weight of the two components
on a heldout development set (Nigam et al., 2000).

5.2.3 Multi-component modeling

As a final application, let’s return to fully supervised classification. A classic dataset for
text classification is 20 newsgroups, which contains posts to a set of online forums, called
newsgroups. One of the newsgroups is comp . sys.mac . hardware, which discusses Ap-
ple computing hardware. Suppose that within this newsgroup there are two kinds of
posts: reviews of new hardware, and question-answer posts about hardware problems.
The language in these components of the mac . hardware class mighthave little in com-
mon; if so, it would be better to model these components separately, rather than treating
their union as a single class. However, the component responsible for each instance is not
directly observed.

Recall that Naive Bayes is based on a generative process, which provides a stochastic
explanation for the observed data. In Naive Bayes, each label is drawn from a categorical
distribution with parameter u, and each vector of word counts is drawn from a multi-
nomial distribution with parameter ¢,. For multi-component modeling, we envision a
slightly different generative process, incorporating both the observed label y() and the
latent component z(*). This generative process is shown in Algorithm 9. A new parameter
ﬁym defines the distribution of components, conditioned on the label y(i). The component,
and not the class label, then parametrizes the distribution over words.
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61 © Villeneuve a bel et bien réussi son pari de changer de perspectives tout en assurant
une cohérence a la franchise.?

(52) ©® Il est également trop long et bancal dans sa narration, tiéde dans ses intentions, et
tiraillé entre deux personnages et directions qui ne parviennent pas a coexister en har-
o3
monie.

(5.3) Denis Villeneuve a réussi une suite parfaitement maitrisée?

(5.4) Long, bavard, hyper design, a peine agité (le comble de 1’action : une bagarre dans la
flotte), métaphysique et, surtout, ennuyeux jusqu’a la catalepsie.®

(5.5) Une suite d'une écrasante puissance, mélant parfaitement le contemplatif au narratif.®

(5.6) Le film impitoyablement bavard finit quand méme par se taire quand se leve 1’'espece
de bouquet final o1 semble se déchainer, comme en libre parcours de poulets décapités,
I'armée des graphistes numériques griffant nerveusement la palette graphique entre ag-
onie et orgasme.”

Table 5.1: Labeled and unlabeled reviews of the films Blade Runner 2049 and Transformers:
The Last Knight.

The labeled data includes (x(?,4), but not 2(%), so this is another case of missing
data. Again, we sum over the missing data, applying Jensen’s inequality to as to obtain a
lower bound on the log-likelihood,

K.
logp(z®,y™) =log > p(a?,y", 2 u, ¢, 8) [5.28]
z=1

>logp(y"im) + By llogp(a? | z:¢) +logp(z |y B) ~ log ¢V (2)].
[5.29]

We are now ready to apply expectation-maximization. As usual, the E-step updates
the distribution over the missing data, qg‘)y. The M-step updates the parameters,

E, [count(y, 2)]

5 , =
B By [count(y, /)]

Eq [count(z, j)]
Z;‘//:l Eq [count(z, j')] .

[5.30]

[5.31]

(z)z,j =

5.3 Semi-supervised learning

In semi-supervised learning, the learner makes use of both labeled and unlabeled data.
To see how this could help, suppose you want to do sentiment analysis in French. In Ta-
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ble 5.1, there are two labeled examples, one positive and one negative. From this data, a
learner could conclude that réussi is positive and long is negative. This isn’t much! How-
ever, we can propagate this information to the unlabeled data, and potentially learn more.

e If we are confident that réussi is positive, then we might guess that (5.3) is also posi-
tive.

e That suggests that parfaitement is also positive.

e We can then propagate this information to (5.5), and learn from the words in this
example.

e Similarly, we can propagate from the labeled data to (5.4), which we guess to be
negative because it shares the word long. This suggests that bavard is also negative,
which we propagate to (5.6).

Instances (5.3) and (5.4) were “similar” to the labeled examples for positivity and negativ-
ity, respectively. By using these instances to expand the models for each class, it became
possible to correctly label instances (5.5) and (5.6), which didn’t share any important fea-
tures with the original labeled data. This requires a key assumption: that similar instances
will have similar labels.

In § 5.2.2, we discussed how expectation-maximization can be applied to semi-supervised
learning. Using the labeled data, the initial parameters ¢ would assign a high weight for
réussi in the positive class, and a high weight for long in the negative class. These weights
helped to shape the distributions g for instances (5.3) and (5.4) in the E-step. In the next
iteration of the M-step, the parameters ¢ are updated with counts from these instances,
making it possible to correctly label the instances (5.5) and (5.6).

However, expectation-maximization has an important disadvantage: it requires using
a generative classification model, which restricts the features that can be used for clas-
sification. In this section, we explore non-probabilistic approaches, which impose fewer
restrictions on the classification model.

5.3.1 Multi-view learning

EM semi-supervised learning can be viewed as self-training: the labeled data guides the
initial estimates of the classification parameters; these parameters are used to compute
a label distribution over the unlabeled instances, ¢(?; the label distributions are used to
update the parameters. The risk is that self-training drifts away from the original labeled
data. This problem can be ameliorated by multi-view learning. Here we take the as-
sumption that the features can be decomposed into multiple “views”, each of which is
conditionally independent, given the label. For example, consider the problem of classi-
fying a name as a person or location: one view is the name itself; another is the context in
which it appears. This situation is illustrated in Table 5.2.
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21 2(2) y
1. Peachtree Street located on LOC
2. Dr. Walker said PER
3. Zanzibar located in ? — LOC
4. Zanzibar flew to ? - LOC
5. Dr. Robert recommended ? — PER
6. Oprah recommended ? — PER

Table 5.2: Example of multiview learning for named entity classification

Co-training is an iterative multi-view learning algorithm, in which there are separate
classifiers for each view (Blum and Mitchell, 1998). At each iteration of the algorithm, each
classifier predicts labels for a subset of the unlabeled instances, using only the features
available in its view. These predictions are then used as ground truth to train the classifiers
associated with the other views. In the example shown in Table 5.2, the classifier on x(!)
might correctly label instance #5 as a person, because of the feature Dr; this instance would
then serve as training data for the classifier on 2(?), which would then be able to correctly
label instance #6, thanks to the feature recommended. If the views are truly independent,
this procedure is robust to drift. Furthermore, it imposes no restrictions on the classifiers
that can be used for each view.

Word-sense disambiguation is particularly suited to multi-view learning, thanks to the
heuristic of “one sense per discourse”: if a polysemous word is used more than once in
a given text or conversation, all usages refer to the same sense (Gale et al., 1992). This
motivates a multi-view learning approach, in which one view corresponds to the local
context (the surrounding words), and another view corresponds to the global context at
the document level (Yarowsky, 1995). The local context view is first trained on a small
seed dataset. We then identify its most confident predictions on unlabeled instances. The
global context view is then used to extend these confident predictions to other instances
within the same documents. These new instances are added to the training data to the
local context classifier, which is retrained and then applied to the remaining unlabeled
data.

5.3.2 Graph-based algorithms

Another family of approaches to semi-supervised learning begins by constructing a graph,
in which pairs of instances are linked with symmetric weights w; ;, e.g.,

wjj = exp(—a x 2@ — 2)|2). [5.32]

The goal is to use this weighted graph to propagate labels from a small set of labeled
instances to larger set of unlabeled instances.
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In label propagation, this is done through a series of matrix operations (Zhu et al.,
2003). Let Q be a matrix of size N x K, in which each row g describes the labeling
of instance i. When ground truth labels are available, then q(i) is an indicator vector,
o Yo =
instances as Qr,, and the remaining rows as Q. The rows of Qs are initialized to assign
equal probabilities to all labels, g; 1, = %

with ¢/, = 1 and ¢ 0. Let us refer to the submatrix of rows containing labeled

Now, let T; ; represent the “transition” probability of moving from node j to node 7,
Wi,j
~ .
2 k=1 Why

We compute values of T ; for all instances j and all unlabeled instances i, forming a matrix
of size Ny x N. If the dataset is large, this matrix may be expensive to store and manip-
ulate; a solution is to sparsify it, by keeping only the ~ largest values in each row, and
setting all other values to zero. We can then “propagate” the label distributions to the
unlabeled instances,

T,; £Pr(j —i) = [5.33]

Qu +TQ [5.34]
s +Qul [5.35]
Qu +Diag(s)'Qu. [5.36]

The expression Q1 indicates multiplication of Qi by a column vector of ones, which is
equivalent to computing the sum of each row of Q. The matrix Diag(s) is a diagonal
matrix with the elements of s on the diagonals. The product Diag(s)~'Qq has the effect
of normalizing the rows of Qu, so that each row of Qs is a probability distribution over
labels.

5.4 Domain adaptation

In many practical scenarios, the labeled data differs in some key respect from the data
to which the trained model is to be applied. A classic example is in consumer reviews:
we may have labeled reviews of movies (the source domain), but we want to predict the
reviews of appliances (the target domain). A similar issue arises with genre differences:
most linguistically-annotated data is news text, but application domains range from social
media to electronic health records. In general, there may be several source and target
domains, each with their own properties; however, for simplicity, this discussion will
focus mainly on the case of a single source and target domain.

The simplest approach is “direct transfer”: train a classifier on the source domain, and
apply it directly to the target domain. The accuracy of this approach depends on the extent
to which features are shared across domains. In review text, words like outstanding and
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disappointing will apply across both movies and appliances; but others, like terrifying, may
have meanings that are domain-specific. As a result, direct transfer performs poorly: for
example, an out-of-domain classifier (trained on book reviews) suffers twice the error rate
of an in-domain classifier on reviews of kitchen appliances (Blitzer et al., 2007). Domain
adaptation algorithms attempt to do better than direct transfer by learning from data in
both domains. There are two main families of domain adaptation algorithms, depending
on whether any labeled data is available in the target domain.

5.4.1 Supervised domain adaptation

In supervised domain adaptation, there is a small amount of labeled data in the target
domain, and a large amount of data in the source domain. The simplest approach would
be to ignore domain differences, and simply merge the training data from the source and
target domains. There are several other baseline approaches to dealing with this sce-
nario (Daumé 111, 2007):

Interpolation. Train a classifier for each domain, and combine their predictions, e.g.,

§ = argmax AWy (x,y) + (1 — X)) ¥y(2,y), [5.37]
Yy

where ¥, and U, are the scoring functions from the source and target domain clas-
sifiers respectively, and ) is the interpolation weight.

Prediction. Train a classifier on the source domain data, use its prediction as an additional
feature in a classifier trained on the target domain data,

Js = argmax V4(x,y) [5.38]
y
9 = argmax U ([x; ys|, y)- [5.39]

Y

Priors. Train a classifier on the source domain data, and use its weights as a prior distri-
bution on the weights of the classifier for the target domain data. This is equivalent
to regularizing the target domain weights towards the weights of the source domain
classifier (Chelba and Acero, 2006),

N
0(8;) = (D (@D, D 0,) + \||6; — 6,13, [5.40]
=1

where (0 is the prediction loss on instance i, and ) is the regularization weight.
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An effective and “frustratingly simple” alternative is EASYADAPT (Daumé III, 2007),
which creates copies of each feature: one for each domain and one for the cross-domain
setting. For example, a negative review of the film Wonder Woman begins, As boring and
flavorless as a three-day-old grilled cheese sandwich....® The resulting bag-of-words feature
vector would be,

f(z,y,d) = {(boring, ®, MOVIE) : 1, (boring, ®, ) : 1,
(flavorless, ®, MOVIE) : 1, (flavorless, ®, *) : 1,
(three-day-old, ®, MOVIE) : 1, (three-day-old, ®, %) : 1,
ot

with (boring, ®, MOVIE) indicating the word boring appearing in a negative labeled doc-
ument in the MOVIE domain, and (boring, ®, x) indicating the same word in a negative
labeled document in any domain. It is up to the learner to allocate weight between the
domain-specific and cross-domain features: for words that facilitate prediction in both
domains, the learner will use the cross-domain features; for words that are relevant only
to a single domain, the domain-specific features will be used. Any discriminative classi-
fier can be used with these augmented features.’

5.4.2 Unsupervised domain adaptation

In unsupervised domain adaptation, there is no labeled data in the target domain. Un-
supervised domain adaptation algorithms cope with this problem by trying to make the
data from the source and target domains as similar as possible. This is typically done by
learning a projection function, which puts the source and target data in a shared space,
in which a learner can generalize across domains. This projection is learned from data in
both domains, and is applied to the base features — for example, the bag-of-words in text
classification. The projected features can then be used both for training and for prediction.

Linear projection

In linear projection, the cross-domain representation is constructed by a matrix-vector
product,

g(x) = Uz, [5.41]

The projected vectors g(x(?)) can then be used as base features during both training (from
the source domain) and prediction (on the target domain).

$http://www.colesmithey.com/capsules/2017/06/wonder—woman . HTML, accessed October 9.
2017.

EASYADAPT can be explained as a hierarchical Bayesian model, in which the weights for each domain
are drawn from a shared prior (Finkel and Manning, 2009).
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The projection matrix U can be learned in a number of different ways, but many ap-
proaches focus on compressing and reconstructing the base features (Ando and Zhang,
2005). For example, we can define a set of pivot features, which are typically chosen be-
cause they appear in both domains: in the case of review documents, pivot features might
include evaluative adjectives like outstanding and disappointing (Blitzer et al., 2007). For
each pivot feature j, we define an auxiliary problem of predicting whether the feature is
present in each example, using the remaining base features. Let ¢; denote the weights of
this classifier, and us horizontally concatenate the weights for each of the IV, pivot features
into a matrix ® = [¢1, 2, ..., dN,].

We then perform truncated singular value decomposition on ®, as described in § 5.2.1,
obtaining ® ~ USV . The rows of the matrix U summarize information about each base
feature: indeed, the truncated singular value decomposition identifies a low-dimension
basis for the weight matrix ®, which in turn links base features to pivot features. Sup-
pose that a base feature reliable occurs only in the target domain of appliance reviews.
Nonetheless, it will have a positive weight towards some pivot features (e.g., outstanding,
recommended), and a negative weight towards others (e.g., worthless, unpleasant). A base
feature such as watchable might have the same associations with the pivot features, and
therefore, Ueliable = Uwatchable: 1he matrix U can thus project the base features into a
space in which this information is shared.

Non-linear projection

Non-linear transformations of the base features can be accomplished by implementing
the transformation function as a deep neural network, which is trained from an auxiliary
objective.

Denoising objectives One possibility is to train a projection function to reconstruct a
corrupted version of the original input. The original input can be corrupted in various
ways: by the addition of random noise (Glorot et al., 2011; Chen et al., 2012), or by the
deletion of features (Chen et al., 2012; Yang and Eisenstein, 2015). Denoising objectives
share many properties of the linear projection method described above: they enable the
projection function to be trained on large amounts of unlabeled data from the target do-
main, and allow information to be shared across the feature space, thereby reducing sen-
sitivity to rare and domain-specific features.

Adversarial objectives The ultimate goal is for the transformed representations g(z(")
to be domain-general. This can be made an explicit optimization criterion by comput-
ing the similarity of transformed instances both within and between domains (Tzeng
et al., 2015), or by formulating an auxiliary classification task, in which the domain it-
self is treated as a label (Ganin et al., 2016). This setting is adversarial, because we want
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x g(x) Ly d@

Figure 5.4: A schematic view of adversarial domain adaptation. The loss ¢, is computed
only for instances from the source domain, where labels y® are available.

to learn a representation that makes this classifier perform poorly. At the same time, we
want g(z(?)) to enable accurate predictions of the labels y).

To formalize this idea, let d*) represent the domain of instance i, and let £4(g(x®), d"); 8,)
represent the loss of a classifier (typically a deep neural network) trained to predict d¥
from the transformed representation g(x ")), using parameters 8,. Analogously, let ¢, (g(z?), y(V; 8,)
represent the loss of a classifier trained to predict the label y* from g(x(?)), using param-
eters 6,. The transformation g can then be trained from two criteria: it should yield accu-
rate predictions of the labels (), while making inaccurate predictions of the domains d(*.
This can be formulated as a joint optimization problem,

N¢+Ny N,
i > Lalg(@:0,).d%:00) =3¢, (9(a:6,).4:6,), [5.42]
IS =1 i=1

where N, is the number of labeled instances and N, is the number of unlabeled instances,
with the labeled instances appearing first in the dataset. This setup is shown in Figure 5.4.
The loss can be optimized by stochastic gradient descent, jointly training the parameters
of the non-linear transformation 6,, and the parameters of the prediction models 6, and
0,.

5.5 *Other approaches to learning with latent variables

Expectation-maximization provides a general approach to learning with latent variables,
but it has limitations. One is the sensitivity to initialization; in practical applications,
considerable attention may need to be devoted to finding a good initialization. A second
issue is that EM tends to be easiest to apply in cases where the latent variables have a clear
decomposition (in the cases we have considered, they decompose across the instances).
For these reasons, it is worth briefly considering some alternatives to EM.
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5.5.1 Sampling

In EM clustering, there is a distribution () for the missing data related to each instance.
The M-step consists of updating the parameters of this distribution. An alternative is to
draw samples of the latent variables. If the sampling distribution is designed correctly,
this procedure will eventually converge to drawing samples from the true posterior over
the missing data, p(z(V=) | £(1:N=)). For example, in the case of clustering, the missing
data z("V=) is the set of cluster memberships, y''"), so we draw samples from the pos-
terior distribution over clusterings of the data. If a single clustering is required, we can
select the one with the highest conditional likelihood, 2 = argmax, p(z(}V=) | g(1:Nz)),

This general family of algorithms is called Markov Chain Monte Carlo (MCMOQ):
“Monte Carlo” because it is based on a series of random draws; “Markov Chain” because
the sampling procedure must be designed such that each sample depends only on the
previous sample, and not on the entire sampling history. Gibbs sampling is an MCMC
algorithm in which each latent variable is sampled from its posterior distribution,

P | x, 27" ~ p(z(") | a:,z(*”)), [5.43]

where z(=") indicates {z\z(™}, the set of all latent variables except for z("). Repeatedly
drawing samples over all latent variables constructs a Markov chain that is guaranteed
to converge to a sequence of samples from p(z(}N=) | (1:N=))_ In probabilistic clustering,
the sampling distribution has the following form,

p(x® | 29;¢) x p(z; )
SE @0 | 26) x plzi p)
«Multinomial(2¥; ¢_)) x .- [5.45]

p(z" |z, 27)) = [5.44]

In this case, the sampling distribution does not depend on the other instances: the poste-
rior distribution over each z(") can be computed from x(*) and the parameters given the
parameters ¢ and .

In sampling algorithms, there are several choices for how to deal with the parameters.
One possibility is to sample them too. To do this, we must add them to the generative
story, by introducing a prior distribution. For the multinomial and categorical parameters
in the EM clustering model, the Dirichlet distribution is a typical choice, since it defines
a probability on exactly the set of vectors that can be parameters: vectors that sum to one
and include only non-negative numbers.!°

To incorporate this prior, the generative model must be augmented to indicate that
each ¢, ~ Dirichlet(a), and p ~ Dirichlet(c,,). The hyperparameters « are typically set
to a constant vector a = [a, «, ..., a]. When « is large, the Dirichlet distribution tends to

101¢ Zf( 0; = 1and 6; > 0 for all 4, then 0 is said to be on the K — 1 simplex. A Dirichlet distribution with
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generate vectors that are nearly uniform; when « is small, it tends to generate vectors that
assign most of their probability mass to a few entries. Given prior distributions over ¢
and p, we can now include them in Gibbs sampling, drawing values for these parameters
from posterior distributions that are conditioned on the other variables in the model.

Unfortunately, sampling ¢ and p usually leads to slow “mixing”, meaning that adja-
cent samples tend to be similar, so that a large number of samples is required to explore
the space of random variables. The reason is that the sampling distributions for the pa-
rameters are tightly constrained by the cluster memberships y(*), which in turn are tightly
constrained by the parameters. There are two solutions that are frequently employed:

e Empirical Bayesian methods maintain ¢ and p as parameters rather than latent
variables. They still employ sampling in the E-step of the EM algorithm, but they
update the parameters using expected counts that are computed from the samples
rather than from parametric distributions. This EM-MCMC hybrid is also known
as Monte Carlo Expectation Maximization (MCEM; Wei and Tanner, 1990), and is
well-suited for cases in which it is difficult to compute g¥) directly.

e In collapsed Gibbs sampling, we analytically integrate ¢ and p out of the model.
The cluster memberships y() are the only remaining latent variable; we sample them
from the compound distribution,

p(y@ | 23Ny ay, a,) =/¢ p(o, p |y 20y, a,)py™ | 2V 45D ¢, p)dpdp.
"

[5.48]
For multinomial and Dirichlet distributions, this integral can be computed in closed
form.

MCMC algorithms are guaranteed to converge to the true posterior distribution over
the latent variables, but there is no way to know how long this will take. In practice, the
rate of convergence depends on initialization, just as expectation-maximization depends
on initialization to avoid local optima. Thus, while Gibbs Sampling and other MCMC
algorithms provide a powerful and flexible array of techniques for statistical inference in
latent variable models, they are not a panacea for the problems experienced by EM.

parameter a € R¥ has support over the K — 1 simplex,

1 = a;—1
pDirichlet(e ‘ a) :B(a) 11:[161 ’ [546]
_ILZ, Do)
B(a) I )’ [5.47]

with I'(+) indicating the gamma function, a generalization of the factorial function to non-negative reals.
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5.5.2 Spectral learning

Another approach to learning with latent variables is based on the method of moments,
which makes it possible to avoid the problem of non-convex log-likelihood. Write Z*) for

the normalized vector of word counts in document i, so that %) = z(?)/ Z —1 x( ") Then
we can form a matrix of word-word co-occurrence probabilities,

C:Z zW(@)T. [5.49]

The expected value of this matrix under p(x | ¢, 11), as

N K
Cl=) > Pr(Z" = k; p)prop) [5.50]
=1 k=1
K
:ZNﬂk¢k¢k [5.51]
k
=®Diag(Nu)d', [5.52]

where ® is formed by horizontally concatenating ¢ ... ¢x, and Diag(Nu) indicates a
diagonal matrix with values Ny, at position (k, k). Setting C equal to its expectation
gives,

C =®Diag(Nu)® ', [5.53]

which is similar to the eigendecomposition C = QAQ'. This suggests that simply by
finding the eigenvectors and eigenvalues of C, we could obtain the parameters ¢ and y,
and this is what motivates the name spectral learning.

While moment-matching and eigendecomposition are similar in form, they impose
different constraints on the solutions: eigendecomposition requires orthonormality, so
that QQ" = I; in estimating the parameters of a text clustering model, we require that
and the columns of ® are probability vectors. Spectral learning algorithms must therefore
include a procedure for converting the solution into vectors that are non-negative and
sum to one. One approach is to replace eigendecomposition (or the related singular value
decomposition) with non-negative matrix factorization (Xu et al., 2003), which guarantees
that the solutions are non-negative (Arora et al., 2013).

After obtaining the parameters ¢ and p, the distribution over clusters can be com-
puted from Bayes’ rule:

p(=" | 2 b, 1) o p(a® | 275 ¢) x p(1; ). [5.54]
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Spectral learning yields provably good solutions without regard to initialization, and can
be quite fast in practice. However, it is more difficult to apply to a broad family of genera-
tive models than EM and Gibbs Sampling. For more on applying spectral learning across
a range of latent variable models, see Anandkumar et al. (2014).

Additional resources

There are a number of other learning paradigms that deviate from supervised learning.

e Active learning: the learner selects unlabeled instances and requests annotations (Set-
tles, 2012).

e Multiple instance learning: labels are applied to bags of instances, with a positive
label applied if at least one instance in the bag meets the criterion (Dietterich et al.,
1997; Maron and Lozano-Pérez, 1998).

e Constraint-driven learning: supervision is provided in the form of explicit con-
straints on the learner (Chang et al., 2007; Ganchev et al., 2010).

e Distant supervision: noisy labels are generated from an external resource (Mintz
et al., 2009, also see § 17.2.3).

e Multitask learning: the learner induces a representation that can be used to solve
multiple classification tasks (Collobert et al., 2011).

e Transfer learning: the learner must solve a classification task that differs from the
labeled data (Pan and Yang, 2010).

Expectation-maximization was introduced by Dempster et al. (1977), and is discussed
in more detail by Murphy (2012). Like most machine learning treatments, Murphy focuses
on continuous observations and Gaussian likelihoods, rather than the discrete observa-
tions typically encountered in natural language processing. Murphy (2012) also includes
an excellent chapter on MCMC; for a textbook-length treatment, see Robert and Casella
(2013). For still more on Bayesian latent variable models, see Barber (2012), and for ap-
plications of Bayesian models to natural language processing, see Cohen (2016). Surveys
are available for semi-supervised learning (Zhu and Goldberg, 2009) and domain adapta-
tion (Segaard, 2013), although both pre-date the current wave of interest in deep learning.

Exercises

1. Derive the expectation maximization update for the parameter p in the EM cluster-
ing model.
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2. Derive the E-step and M-step updates for the following generative model. You may

assume that the labels y(i) are observed, but z,(,? is not.

e For each instance 1,

— Draw label y*) ~ Categorical(y)
— For each token m € {1,2,..., M®}
« Draw 2 ~ Categorical(m)
* If 27(7? = 0, draw the current token from a label-specific distribution,
w' ~ b
m ) y(l)
* If z,(ﬁ) = 1, draw the current token from a document-specific distribu-
tion, w?) ~ v

3. Using the iterative updates in Equations 5.34-5.36, compute the outcome of the label
propagation algorithm for the following examples.

The value inside the node indicates the label, y(*) € {0,1}, with y(® =7 for unlabeled
nodes. The presence of an edge between two nodes indicates w; ; = 1, and the
absence of an edge indicates w; ; = 0. For the third example, you need only compute
the first three iterations, and then you can guess at the solution in the limit.

4. Use expectation-maximization clustering to train a word-sense induction system,
applied to the word say.

e Import NLTK, run NLTK.DOWNLOAD() and select SEMCOR. Import SEMCOR
from NLTK.CORPUS.

e The command SEMCOR.TAGGED_SENTENCES(TAG='SENSE’) returns an itera-
tor over sense-tagged sentences in the corpus. Each sentence can be viewed
as an iterator over TREE objects. For TREE objects that are sense-annotated
words, you can access the annotation as TREE.LABEL(), and the word itself with
TREE.LEAVES(). SO SEMCOR.TAGGED_SENTENCES(TAG="SENSE")[0][2].LABEL()
would return the sense annotation of the third word in the first sentence.

e Extract all sentences containing the senses SAY.V.01 and SAY.V.02.

e Build bag-of-words vectors z(®, containing the counts of other words in those
sentences, including all words that occur in at least two sentences.

¢ Implement and run expectation-maximization clustering on the merged data.
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120 CHAPTER 5. LEARNING WITHOUT SUPERVISION

e Compute the frequency with which each cluster includes instances of SAY.v.01
and SAY.V.02.

In the remaining exercises, you will try out some approaches for semisupervised learn-
ing and domain adaptation. You will need datasets in multiple domains. You can obtain
product reviews in multiple domains here: https://www.cs. jhu.edu/~mdredze/
datasets/sentiment/processed_acl.tar.gz. Chooseasource and target domain,
e.g. dvds and books, and divide the data for the target domain into training and test sets
of equal size.

5. First, quantify the cost of cross-domain transfer.

e Train a logistic regression classifier on the source domain training set, and eval-
uate it on the target domain test set.

e Train a logistic regression classifier on the target domain training set, and eval-
uate it on the target domain test set. This it the “direct transfer” baseline.

Compute the difference in accuracy, which is a measure of the transfer loss across
domains.

6. Next, apply the label propagation algorithm from § 5.3.2.

As a baseline, using only 5% of the target domain training set, train a classifier, and
compute its accuracy on the target domain test set.

Next, apply label propagation:

e Compute the label matrix Q, for the labeled data (5% of the target domain
training set), with each row equal to an indicator vector for the label (positive
or negative).

e Iterate through the target domain instances, including both test and training
data. At each instance i, compute all w;;, using Equation 5.32, with o = 0.01.
Use these values to fill in column ¢ of the transition matrix T, setting all but the
ten largest values to zero for each column i. Be sure to normalize the column
so that the remaining values sum to one. You may need to use a sparse matrix
for this to fit into memory.

e Apply the iterative updates from Equations 5.34-5.36 to compute the outcome
of the label propagation algorithm for the unlabeled examples.

Select the test set instances from Qp, and compute the accuracy of this method.
Compare with the supervised classifier trained only on the 5% sample of the target
domain training set.
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7. Using only 5% of the target domain training data (and all of the source domain train-
ing data), implement one of the supervised domain adaptation baselines in § 5.4.1.
See if this improves on the “direct transfer” baseline from the previous problem

8. Implement EASYADAPT (§ 5.4.1), again using 5% of the target domain training data
and all of the source domain data.

9. Now try unsupervised domain adaptation, using the “linear projection” method
described in § 5.4.2. Specifically:

e Identify 500 pivot features as the words with the highest frequency in the (com-
plete) training data for the source and target domains. Specifically, let z¢ be the
count of the word ¢ in domain d: choose the 500 words with the largest values
of min(xur¢, xzargej).

e Train a classifier to predict each pivot feature from the remaining words in the
document.

e Arrange the features of these classifiers into a matrix ®, and perform truncated
singular value decomposition, with k& = 20

e Train a classifier from the source domain data, using the combined features
x() @ UTz() — these include the original bag-of-words features, plus the pro-
jected features.

e Apply this classifier to the target domain test set, and compute the accuracy.
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Chapter 6

Language models

In probabilistic classification, the problem is to compute the probability of a label, condi-
tioned on the text. Let’s now consider the inverse problem: computing the probability of
text itself. Specifically, we will consider models that assign probability to a sequence of
word tokens, p(wi, we, ..., wr), with w,, € V. The set V is a discrete vocabulary,

V = {aardvark,abacus, . . ., zither}. [6.1]

Why would you want to compute the probability of a word sequence? In many appli-
cations, the goal is to produce word sequences as output:

e In machine translation (chapter 18), we convert from text in a source language to
text in a target language.

¢ In speech recognition, we convert from audio signal to text.
¢ In summarization (§ 16.3.4; § 19.2), we convert from long texts into short texts.

e In dialogue systems (§ 19.3), we convert from the user’s input (and perhaps an
external knowledge base) into a text response.

In many of the systems for performing these tasks, there is a subcomponent that com-
putes the probability of the output text. The purpose of this component is to generate
texts that are more fluent. For example, suppose we want to translate a sentence from
Spanish to English.

(6.1) El cafe negro me gusta mucho.
Here is a literal word-for-word translation (a gloss):

(6.2) The coffee black me pleases much.
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126 CHAPTER 6. LANGUAGE MODELS

A good language model of English will tell us that the probability of this translation is
low, in comparison with more grammatical alternatives,

p(The coffee black me pleases much) < p(I love dark coffee). [6.2]

How can we use this fact? Warren Weaver, one of the early leaders in machine trans-
lation, viewed it as a problem of breaking a secret code (Weaver, 1955):

When I look at an article in Russian, I say: "This is really written in English,
but it has been coded in some strange symbols. I will now proceed to decode.’

This observation motivates a generative model (like Naive Bayes):

e The English sentence w(®) is generated from a language model, p,(w(®)).

e The Spanish sentence w(*) is then generated from a translation model, Psie (w® | w©).

Given these two distributions, translation can be performed by Bayes’ rule:

P (w | w®)) ocp, (w),w®) [6.3]
=P, (W) [ w(?) x p,(w). [6.4]

This is sometimes called the noisy channel model, because it envisions English text
turning into Spanish by passing through a noisy channel, p, .. What is the advantage of
modeling translation this way, as opposed to modeling p, directly? The crucial point is
that the two distributions p,, (the translation model) and p, (the language model) can be
estimated from separate data. The translation model requires examples of correct trans-
lations, but the language model requires only text in English. Such monolingual data is
much more widely available. Furthermore, once estimated, the language model p_ can
be reused in any application that involves generating English text, including translation
from other languages.

6.1 N-gram language models

A simple approach to computing the probability of a sequence of tokens is to use a relative
frequency estimate. Consider the quote, attributed to Picasso, “computers are useless, they
can only give you answers.” One way to estimate the probability of this sentence is,

p(Computers are useless, they can only give you answers)

_ count(Computers are useless, they can only give you answers)
B count(all sentences ever spoken)

[6.5]
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6.1. N-GRAM LANGUAGE MODELS 127

This estimator is unbiased: in the theoretical limit of infinite data, the estimate will
be correct. But in practice, we are asking for accurate counts over an infinite number of
events, since sequences of words can be arbitrarily long. Even with an aggressive upper
bound of, say, M = 20 tokens in the sequence, the number of possible sequences is V2,
where V = |V|. A small vocabularly for English would have V = 10°, so there are 101%°
possible sequences. Clearly, this estimator is very data-hungry, and suffers from high vari-
ance: even grammatical sentences will have probability zero if they have not occurred in
the training data.! We therefore need to introduce bias to have a chance of making reli-
able estimates from finite training data. The language models that follow in this chapter
introduce bias in various ways.

We begin with n-gram language models, which compute the probability of a sequence
as the product of probabilities of subsequences. The probability of a sequence p(w) =

p(wi, wa, ..., wy) can be refactored using the chain rule (see § A.2):
p(w) =p(w1,ws,...,wn) [6.6]
:p(wl) X p(wz ’ wl) X p(w3 ‘ wg,wl) X ... X p(wM ’ WM -1y - - ,wl) [67]

Each element in the product is the probability of a word given all its predecessors. We
can think of this as a word prediction task: given the context Computers are, we want to com-
pute a probability over the next token. The relative frequency estimate of the probability
of the word useless in this context is,

count(computers are useless)
> zcy count(computers are x)

p(useless | computers are) =

count(computers are useless)
count(computers are)

We haven’t made any approximations yet, and we could have just as well applied the
chain rule in reverse order,

p(w) = p(wM) X p(wM,l ’ wM) X ... X p(w1 ’ wo, ... ,U)M), [68]

or in any other order. But this means that we also haven’t really made any progress:
to compute the conditional probability p(was | war—1, war—2, ..., w1), we would need to
model VM1 contexts. Such a distribution cannot be estimated from any realistic sample
of text.

To solve this problem, n-gram models make a crucial simplifying approximation: they
condition on only the past n — 1 words.

P(wm | Win—1 ... w1) =p(Wp, | W1, .., Wm—n+t1) [6.9]

!Chomsky famously argued that this is evidence against the very concept of probabilistic language mod-
els: no such model could distinguish the grammatical sentence colorless green ideas sleep furiously from the
ungrammatical permutation furiously sleep ideas green colorless.
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128 CHAPTER 6. LANGUAGE MODELS

This means that the probability of a sentence w can be approximated as

M
p(wi,...,wy) = H P(wm | Win—1,. -, Wn—n+1) [6.10]

m=1

To compute the probability of an entire sentence, it is convenient to pad the beginning
and end with special symbols [J and M. Then the bigram (n = 2) approximation to the
probability of I like black coffee is:

p(I like black coffee) = p(I | O) x p(like | I) x p(black | like) x p(coffee | black) x p(M | coffee).
[6.11]

This model requires estimating and storing the probability of only V" events, which is
exponential in the order of the n-gram, and not VM which is exponential in the length of
the sentence. The n-gram probabilities can be computed by relative frequency estimation,

count(wWy,—2, Wy—1, Wi,

6.12
> count(wy, —2, Wy, —1, w') [6-12]

p(wm | wm—17wm—2) ==

The hyperparameter n controls the size of the context used in each conditional proba-
bility. If this is misspecified, the language model will perform poorly. Let’s consider the
potential problems concretely.

When n is too small. Consider the following sentences:

(6.3) Gorillas always like to groom their friends.

(6.4) The computer that’s on the 3rd floor of our office building crashed.

In each example, the words written in bold depend on each other: the likelihood
of their depends on knowing that gorillas is plural, and the likelihood of crashed de-
pends on knowing that the subject is a computer. If the n-grams are not big enough
to capture this context, then the resulting language model would offer probabili-
ties that are too low for these sentences, and too high for sentences that fail basic
linguistic tests like number agreement.

When n is too big. In this case, it is hard good estimates of the n-gram parameters from
our dataset, because of data sparsity. To handle the gorilla example, it is necessary to
model 6-grams, which means accounting for V¢ events. Under a very small vocab-
ulary of V = 10%, this means estimating the probability of 10?4 distinct events.
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These two problems point to another bias-variance tradeoff (see § 2.2.4). A small n-
gram size introduces high bias, and a large n-gram size introduces high variance. We
can even have both problems at the same time! Language is full of long-range dependen-
cies that we cannot capture because n is too small; at the same time, language datasets
are full of rare phenomena, whose probabilities we fail to estimate accurately because n
is too large. One solution is to try to keep n large, while still making low-variance esti-
mates of the underlying parameters. To do this, we will introduce a different sort of bias:
smoothing.

6.2 Smoothing and discounting

Limited data is a persistent problem in estimating language models. In § 6.1, we pre-
sented n-grams as a partial solution. Bit sparse data can be a problem even for low-order
n-grams; at the same time, many linguistic phenomena, like subject-verb agreement, can-
not be incorporated into language models without high-order n-grams. It is therefore
necessary to add additional inductive biases to n-gram language models. This section
covers some of the most intuitive and common approaches, but there are many more (see
Chen and Goodman, 1999).

6.2.1 Smoothing

A major concern in language modeling is to avoid the situation p(w) = 0, which could
arise as a result of a single unseen n-gram. A similar problem arose in Naive Bayes, and
the solution was smoothing: adding imaginary “pseudo” counts. The same idea can be
applied to n-gram language models, as shown here in the bigram case,

Count(wm—17 wm) +a [613]

psmooth(wm | wmil) - Zw/ev Count(wm—17w/) +Va

This basic framework is called Lidstone smoothing, but special cases have other names:

¢ Laplace smoothing corresponds to the case oo = 1.

o Jeffreys-Perks law corresponds to the case a = 0.5, which works well in practice
and benefits from some theoretical justification (Manning and Schiitze, 1999).

To ensure that the probabilities are properly normalized, anything that we add to the
numerator (o) must also appear in the denominator (V). This idea is reflected in the
concept of effective counts:

M

@ =ty v

[6.14]
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Lidstone smoothing, « = 0.1 Discounting, d = 0.1

unsmoothed  effective smoothed effective smoothed
counts probability counts probability counts probability
impropriety 8 0.4 7.826 0.391 7.9 0.395
offense 5 0.25 4,928 0.246 49 0.245
damage 4 0.2 3.961 0.198 3.9 0.195
deficiencies 2 0.1 2.029 0.101 1.9 0.095
outbreak 1 0.05 1.063 0.053 0.9 0.045
infirmity 0 0 0.097 0.005 0.25 0.013
cephalopods 0 0 0.097 0.005 0.25 0.013

Table 6.1: Example of Lidstone smoothing and absolute discounting in a bigram language
model, for the context (alleged, ), for a toy corpus with a total of twenty counts over the
seven words shown. Note that discounting decreases the probability for all but the un-
seen words, while Lidstone smoothing increases the effective counts and probabilities for
deficiencies and outbreak.

where c; is the count of event 7, ¢! is the effective count, and M = 3.V, ¢; is the total num-
ber of tokens in the dataset (wy, we, . .., wyr). This term ensures that ZY:I ¢ = Z};l ¢ =M.
The discount for each n-gram is then computed as,

;i  (ci+a) M
¢ ¢ (M+Va)

6.2.2 Discounting and backoff

Discounting “borrows” probability mass from observed n-grams and redistributes it. In
Lidstone smoothing, the borrowing is done by increasing the denominator of the relative
frequency estimates. The borrowed probability mass is then redistributed by increasing
the numerator for all n-grams. Another approach would be to borrow the same amount
of probability mass from all observed n-grams, and redistribute it among only the unob-
served n-grams. This is called absolute discounting. For example, suppose we set an
absolute discount d = 0.1 in a bigram model, and then redistribute this probability mass
equally over the unseen words. The resulting probabilities are shown in Table 6.1.

Discounting reserves some probability mass from the observed data, and we need not
redistribute this probability mass equally. Instead, we can backoff to a lower-order lan-
guage model: if you have trigrams, use trigrams; if you don’t have trigrams, use bigrams;
if you don’t even have bigrams, use unigrams. This is called Katz backoff. In the simple

Jacob Eisenstein. Draft of November 13, 2018.



6.2. SMOOTHING AND DISCOUNTING 131

case of backing off from bigrams to unigrams, the bigram probabilities are,

¢*(ir ) =c(i, j) — d [6.15]
() if ¢(i,5) > 0

. o 6.16

Pkatz (¢ | 7) a(j) x e Punigam® if c(i, j) = 0. 16-16]

Zi’:c(i’,j):o punigram(i/)

The term «(j) indicates the amount of probability mass that has been discounted for
context j. This probability mass is then divided across all the unseen events, {i’ : ¢(i', j) =
0}, proportional to the unigram probability of each word ¢’. The discount parameter d can
be optimized to maximize performance (typically held-out log-likelihood) on a develop-
ment set.

6.2.3 *Interpolation

Backoff is one way to combine different order n-gram models. An alternative approach
is interpolation: setting the probability of a word in context to a weighted sum of its
probabilities across progressively shorter contexts.

Instead of choosing a single n for the size of the n-gram, we can take the weighted
average across several n-gram probabilities. For example, for an interpolated trigram
model,

pInterpolation(wm | wm_l,wm_z) = ASp;(wm | wm—lvwm—2)
+ AQP;(wm | wmfl)
+ Apy (wm).

In this equation, p; is the unsmoothed empirical probability given by an n-gram lan-
guage model, and )\, is the weight assigned to this model. To ensure that the interpolated
p(w) is still a valid probability distribution, the values of A must obey the constraint,
S ormax X, = 1. But how to find the specific values?

n=1
An elegant solution is expectation-maximization. Recall from chapter 5 that we can
think about EM as learning with missing data: we just need to choose missing data such
that learning would be easy if it weren’t missing. What’s missing in this case? Think of
each word w,, as drawn from an n-gram of unknown size, z,, € {1...nmax}. This z,, is
the missing data that we are looking for. Therefore, the application of EM to this problem
involves the following generative model:
for Each token w,,,,m =1,2,..., M do:
draw the n-gram size z,, ~ Categorical(\);
draw w,,, ~ p’;m(wm | W1,y Wm—s,, )
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If the missing data {Z,,} were known, then A could be estimated as the relative fre-
quency,

_count(Z,, = z)

Az i [6.17]
M

x> 8(Zm =2). [6.18]
m=1

But since we do not know the values of the latent variables Z,,,, we impute a distribution
¢m in the E-step, which represents the degree of belief that word token w,,, was generated
from a n-gram of order z,,,

G (2) 2Pr(Zy = 2 | Wiin; A) [6.19]

p(wm | Wim—1, Zm = 2) X p(2)

= 6.20
5 Pt [ W1, Z = 2)  P(2) 10.20
sz(wm ‘ wl:mfl) X Az [621]
In the M-step, A is computed by summing the expected counts under g,
M
Ae o< Y gm(2). [6.22]
m=1

A solution is obtained by iterating between updates to ¢ and A. The complete algorithm
is shown in Algorithm 10.

Algorithm 10 Expectation-maximization for interpolated language modeling

procedure ESTIMATE INTERPOLATED n-GRAM (W1:a7, {P}: }nel:nmax)

forz € {1,2,...,nmax} do > Initialization
A\, — 1L

1:
2
3 Mmax

4: repeat

5: form e {1,2,...,M} do > E-step
6

7

8

9

forz € {1,2,...,nmax} do
qm(2) < Pr(Wm | Wim—) X A,
gm < Normalize(g,,)
: forz € {1,2,...,nmax} do > M-step
10: A= M gn(2)
11: until tired
12: return A
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6.2.4 *Kneser-Ney smoothing

Kneser-Ney smoothing is based on absolute discounting, but it redistributes the result-
ing probability mass in a different way from Katz backoff. Empirical evidence points
to Kneser-Ney smoothing as the state-of-art for n-gram language modeling (Goodman,
2001). To motivate Kneser-Ney smoothing, consider the example: I recently visited _.
Which of the following is more likely: Francisco or Duluth?

Now suppose that both bigrams visited Duluth and visited Francisco are unobserved in
the training data, and furthermore, that the unigram probability p}(Francisco) is greater
than p}(Duluth). Nonetheless we would still guess that p(visited Duluth) > p(visited Francisco),
because Duluth is a more “versatile” word: it can occur in many contexts, while Francisco
usually occurs in a single context, following the word San. This notion of versatility is the
key to Kneser-Ney smoothing.

Writing u for a context of undefined length, and count(w, u) as the count of word w in
context u, we define the Kneser-Ney bigram probability as

max(count(w,u)—d,0) count -0
Pren(w | u) = { countu) @’ “) [6.23]
a(u) X pcontinuation(w)7 otherwise
|u : count(w, u) > 0|
pcontinuation(w) = [6.24]

Y owey [u' : count(w’, u') > 0]

Probability mass using absolute discounting d, which is taken from all unobserved
n-grams. The total amount of discounting in context u is d x |w : count(w, ) > 0|, and
we divide this probability mass among the unseen n-grams. To account for versatility,
we define the continuation probability p__ . uation () @s proportional to the number of ob-
served contexts in which w appears. The numerator of the continuation probability is the
number of contexts u in which w appears; the denominator normalizes the probability by
summing the same quantity over all words w’. The coefficient a(u) is set to ensure that
the probability distribution p . (w | ) sums to one over the vocabulary w.

The idea of modeling versatility by counting contexts may seem heuristic, but there is
an elegant theoretical justification from Bayesian nonparametrics (Teh, 2006). Kneser-Ney
smoothing on n-grams was the dominant language modeling technique before the arrival
of neural language models.

6.3 Recurrent neural network language models

N-gram language models have been largely supplanted by neural networks. These mod-
els do not make the n-gram assumption of restricted context; indeed, they can incorporate
arbitrarily distant contextual information, while remaining computationally and statisti-
cally tractable.
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Figure 6.1: The recurrent neural network language model, viewed as an “unrolled” com-
putation graph. Solid lines indicate direct computation, dotted blue lines indicate proba-
bilistic dependencies, circles indicate random variables, and squares indicate computation
nodes.

The first insight behind neural language models is to treat word prediction as a dis-
criminative learning task.? The goal is to compute the probability p(w | u), where w € V is
a word, and wu is the context, which depends on the previous words. Rather than directly
estimating the word probabilities from (smoothed) relative frequencies, we can treat treat
language modeling as a machine learning problem, and estimate parameters that maxi-
mize the log conditional probability of a corpus.

The second insight is to reparametrize the probability distribution p(w | u) as a func-
tion of two dense K -dimensional numerical vectors, 3,, € R¥X, and v, € R¥,

exp(Buw - vy)
w' eV exp(ﬂw’ : UU) ’

Pl ) = 5= [6.25]

where 3, - v, represents a dot product. As usual, the denominator ensures that the prob-
ability distribution is properly normalized. This vector of probabilities is equivalent to
applying the softmax transformation (see § 3.1) to the vector of dot-products,

p(- | u) = SoftMax([B1 - vy, B2 - Vu, - - -, By - vu]). [6.26]

The word vectors 3,, are parameters of the model, and are estimated directly. The
context vectors v, can be computed in various ways, depending on the model. A simple
but effective neural language model can be built from a recurrent neural network (RNN;
Mikolov et al., 2010). The basic idea is to recurrently update the context vectors while
moving through the sequence. Let h,, represent the contextual information at position m

2This idea predates neural language models (e.g., Rosenfeld, 1996; Roark et al., 2007).
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in the sequence. RNN language models are defined,

T 2o, [6.27]
Ry =RNN(2,,,, B 1) [6.28]
eXp(IBU)m+1 : h’m)

6.29
Z’LU’EV exp(ﬁw, . hm) ? [ ]

p(wm+1 ’ w1, W2, .. .,wm) =

where ¢ is a matrix of word embeddings, and x,,, denotes the embedding for word wy,.
The conversion of wy, to x,, is sometimes known as a lookup layer, because we simply
lookup the embeddings for each word in a table; see § 3.2.4.

The Elman unit defines a simple recurrent operation (Elman, 1990),
RNN(Z, 1) = (Ol 1 + ), [6.30]

where ® € RE*K js the recurrence matrix and ¢ is a non-linear transformation function,
often defined as the elementwise hyperbolic tangent tanh (see § 3.1).> The tanh acts as a
squashing function, ensuring that each element of h,,, is constrained to the range [—1, 1].

Although each w,, depends on only the context vector h,,_;, this vector is in turn
influenced by all previous tokens, wy, ws, . .. wn,—1, through the recurrence operation: w;
affects hy, which affects hy, and so on, until the information is propagated all the way to
h,,—1, and then on to w,, (see Figure 6.1). This is an important distinction from n-gram
language models, where any information outside the n-word window is ignored. In prin-
ciple, the RNN language model can handle long-range dependencies, such as number
agreement over long spans of text — although it would be difficult to know where exactly
in the vector h,, this information is represented. The main limitation is that informa-
tion is attenuated by repeated application of the squashing function g. Long short-term
memories (LSTMs), described below, are a variant of RNNs that address this issue, us-
ing memory cells to propagate information through the sequence without applying non-
linearities (Hochreiter and Schmidhuber, 1997).

The denominator in Equation 6.29 is a computational bottleneck, because it involves
a sum over the entire vocabulary. One solution is to use a hierarchical softmax function,
which computes the sum more efficiently by organizing the vocabulary into a tree (Mikolov
etal., 2011). Another strategy is to optimize an alternative metric, such as noise-contrastive
estimation (Gutmann and Hyvérinen, 2012), which learns by distinguishing observed in-
stances from artificial instances generated from a noise distribution (Mnih and Teh, 2012).
Both of these strategies are described in § 14.5.3.

*In the original Elman network, the sigmoid function was used in place of tanh. For an illuminating
mathematical discussion of the advantages and disadvantages of various nonlinearities in recurrent neural
networks, see the lecture notes from Cho (2015).
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6.3.1 Backpropagation through time

The recurrent neural network language model has the following parameters:

e ¢; € RE, the “input” word vectors (these are sometimes called word embeddings,
since each word is embedded in a K-dimensional space; see chapter 14);

e 3; € RX, the “output” word vectors;
e © ¢ REXK the recurrence operator;

e hy, the initial state.

Each of these parameters can be estimated by formulating an objective function over the
training corpus, L(w), and then applying backpropagation to obtain gradients on the
parameters from a minibatch of training examples (see § 3.3.1). Gradient-based updates
can be computed from an online learning algorithm such as stochastic gradient descent
(see §2.6.2).

The application of backpropagation to recurrent neural networks is known as back-
propagation through time, because the gradients on units at time m depend in turn on the
gradients of units at earlier times n < m. Let ¢, represent the negative log-likelihood
of word m + 1,

U1 = —logp(wmt1 | w1, wa, ..., Wy). [6.31]
We require the gradient of this loss with respect to each parameter, such as 6y, 5/, an indi-

vidual element in the recurrence matrix ©. Since the loss depends on the parameters only
through h,,, we can apply the chain rule of differentiation,

8‘ngrl _a£m+1 ahm

Oy Ol OOpp [6.32]

The vector h,, depends on ® in several ways. First, h,, is computed by multiplying ® by
the previous state h,,_1. But the previous state h,,,_; also depends on ©:

hp :g(xm7 hm—l) [633]
ahmk / ahm—l

— = m 0y, - hm— hm— ! 0y, - ) 6.34

T 9 (@mk + Ok 1) (hm—10 + Ok a%k,) [6.34]

where ¢’ is the local derivative of the nonlinear function g. The key point in this equation

is that the derivative 2Pm depends on Ohm,
90, 1. 30,

=1, which will depend in turn on %’;7”‘2 , and
k! K,k

so on, until reaching the initial state hy.

Each derivative 3%22/ will be reused many times: it appears in backpropagation from

the loss ¢,,, but also in all subsequent losses /,~,,. Neural network toolkits such as
Torch (Collobert et al., 2011) and DyNet (Neubig et al., 2017) compute the necessary
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derivatives automatically, and cache them for future use. An important distinction from
the feedforward neural networks considered in chapter 3 is that the size of the computa-
tion graph is not fixed, but varies with the length of the input. This poses difficulties for
toolkits that are designed around static computation graphs, such as TensorFlow (Abadi
etal., 2016).4

6.3.2 Hyperparameters

The RNN language model has several hyperparameters that must be tuned to ensure good
performance. The model capacity is controlled by the size of the word and context vectors
K, which play a role that is somewhat analogous to the size of the n-gram context. For
datasets that are large with respect to the vocabulary (i.e., there is a large token-to-type
ratio), we can afford to estimate a model with a large K, which enables more subtle dis-
tinctions between words and contexts. When the dataset is relatively small, then K must
be smaller too, or else the model may “memorize” the training data, and fail to generalize.
Unfortunately, this general advice has not yet been formalized into any concrete formula
for choosing K, and trial-and-error is still necessary. Overfitting can also be prevented by
dropout, which involves randomly setting some elements of the computation to zero (Sri-
vastava et al., 2014), forcing the learner not to rely too much on any particular dimension
of the word or context vectors. The dropout rate must also be tuned on development data.

6.3.3 Gated recurrent neural networks

In principle, recurrent neural networks can propagate information across infinitely long
sequences. But in practice, repeated applications of the nonlinear recurrence function
causes this information to be quickly attenuated. The same problem affects learning: back-
propagation can lead to vanishing gradients that decay to zero, or exploding gradients
that increase towards infinity (Bengio et al., 1994). The exploding gradient problem can
be addressed by clipping gradients at some maximum value (Pascanu et al., 2013). The
other issues must be addressed by altering the model itself.

The long short-term memory (LSTM; Hochreiter and Schmidhuber, 1997) is a popular
variant of RNNs that is more robust to these problems. This model augments the hidden
state h,, with a memory cell ¢,,. The value of the memory cell at each time m is a gated
sum of two quantities: its previous value ¢,,—1, and an “update” ¢,,, which is computed
from the current input x,, and the previous hidden state h,,_1. The next state h,, is then
computed from the memory cell. Because the memory cell is not passed through a non-
linear squashing function during the update, it is possible for information to propagate
through the network over long distances.

*See https://www.tensorflow.org/tutorials/recurrent (retrieved Feb 8,2018).
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I:l hm+1
1

o 0,41
e WP Cm+1
I L Ptmtl

Cm—l—l

Figure 6.2: The long short-term memory (LSTM) architecture. Gates are shown in boxes
with dotted edges. In an LSTM language model, each h,, would be used to predict the
next word W, 41.

The gates are functions of the input and previous hidden state. They are computed
from elementwise sigmoid activations, o(z) = (1 +exp(—z)) !, ensuring that their values
will be in the range [0, 1]. They can therefore be viewed as soft, differentiable logic gates.
The LSTM architecture is shown in Figure 6.2, and the complete update equations are:

fs1 =0(©@Dp + 0@ Ng )+ by) forget gate [6.35]
Tl :a(®(h_*i)hm + 0 )g, 1+ b;) input gate [6.36]
Crmil = tanh(@“HC) h,, + ®(w_>c)a:m+1) update candidate [6.37]
Cm+1 =Fm+1 © Cm + tmt1 © Gt memory cell update [6.38]
Om1 :U(G)(}HO) h,, + G)(xﬁo)a:qu + b,) output gate [6.39]
hypt1 =041 © tanh(cpy1) output. [6.40]

The operator © is an elementwise (Hadamard) product. Each gate is controlled by a vec-
tor of weights, which parametrize the previous hidden state (e.g., ®"f)) and the current
input (e.g., ©@7)), plus a vector offset (e.g., bs). The overall operation can be infor-
mally summarized as (hy, ¢;,) = LSTM(@y,, (-1, ¢m—1)), with (R, ¢,,) representing
the LSTM state after reading token m.

The LSTM outperforms standard recurrent neural networks across a wide range of
problems. It was first used for language modeling by Sundermeyer et al. (2012), but can
be applied more generally: the vector h,, can be treated as a complete representation of
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the input sequence up to position m, and can be used for any labeling task on a sequence
of tokens, as we will see in the next chapter.

There are several LSTM variants, of which the Gated Recurrent Unit (Cho et al., 2014)
is one of the more well known. Many software packages implement a variety of RNN
architectures, so choosing between them is simple from a user’s perspective. Jozefowicz
et al. (2015) provide an empirical comparison of various modeling choices circa 2015.

6.4 Evaluating language models

Language modeling is not usually an application in itself: language models are typically
components of larger systems, and they would ideally be evaluated extrinisically. This
means evaluating whether the language model improves performance on the application
task, such as machine translation or speech recognition. But this is often hard to do, and
depends on details of the overall system which may be irrelevant to language modeling.
In contrast, intrinsic evaluation is task-neutral. Better performance on intrinsic metrics
may be expected to improve extrinsic metrics across a variety of tasks, but there is always
the risk of over-optimizing the intrinsic metric. This section discusses some intrinsic met-
rics, but keep in mind the importance of performing extrinsic evaluations to ensure that
intrinsic performance gains carry over to real applications.

6.4.1 Held-out likelihood

The goal of probabilistic language models is to accurately measure the probability of se-
quences of word tokens. Therefore, an intrinsic evaluation metric is the likelihood that the
language model assigns to held-out data, which is not used during training. Specifically,
we compute,

M
((w) = logp(wm | wm-1,...,w1), [6.41]

m=1

treating the entire held-out corpus as a single stream of tokens.

Typically, unknown words are mapped to the (UNK) token. This means that we have
to estimate some probability for (UNK) on the training data. One way to do this is to fix
the vocabulary V to the V' — 1 words with the highest counts in the training data, and then
convert all other tokens to (UNK). Other strategies for dealing with out-of-vocabulary
terms are discussed in § 6.5.
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6.4.2 Perplexity

Held-out likelihood is usually presented as perplexity, which is a deterministic transfor-
mation of the log-likelihood into an information-theoretic quantity,

L(w)

Perplex(w) =274, [6.42]

where M is the total number of tokens in the held-out corpus.

Lower perplexities correspond to higher likelihoods, so lower scores are better on this
metric — it is better to be less perplexed. Here are some special cases:

e In the limit of a perfect language model, probability 1 is assigned to the held-out
corpus, with Perplex(w) = 27370821 = 20 — |,

¢ In the opposite limit, probability zero is assigned to the held-out corpus, which cor-
responds to an infinite perplexity, Perplex(w) = 273710820 — 990 — o,

e Assume a uniform, unigram model in which p(w;) = % for all words in the vocab-
ulary. Then,

M M
1
log, (w) = logy — = — logo, V =—Mlog, V
8o (w) mZ::l g 7 mZ::l 25 g
Perplex(w) —23rMlog, V

:210g2 \%

=V.

This is the “worst reasonable case” scenario, since you could build such a language
model without even looking at the data.

In practice, language models tend to give perplexities in the range between 1 and V.
A small benchmark dataset is the Penn Treebank, which contains roughly a million to-
kens; its vocabulary is limited to 10,000 words, with all other tokens mapped a special
(UNK) symbol. On this dataset, a well-smoothed 5-gram model achieves a perplexity of
141 (Mikolov and Zweig, Mikolov and Zweig), and an LSTM language model achieves
perplexity of roughly 80 (Zaremba, Sutskever, and Vinyals, Zaremba et al.). Various en-
hancements to the LSTM architecture can bring the perplexity below 60 (Merity et al.,
2018). A larger-scale language modeling dataset is the 1B Word Benchmark (Chelba et al.,
2013), which contains text from Wikipedia. On this dataset, perplexities of around 25 can
be obtained by averaging together multiple LSTM language models (Jozefowicz et al.,
2016).
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6.5 Out-of-vocabulary words

So far, we have assumed a closed-vocabulary setting — the vocabulary V is assumed to be
a finite set. In realistic application scenarios, this assumption may not hold. Consider, for
example, the problem of translating newspaper articles. The following sentence appeared
in a Reuters article on January 6, 2017:>

The report said U.S. intelligence agencies believe Russian military intelligence,
the GRU, used intermediaries such as WikiLeaks, DCLeaks.com and the Guc-
cifer 2.0 "persona” to release emails...

Suppose that you trained a language model on the Gigaword corpus,® which was released
in 2003. The bolded terms either did not exist at this date, or were not widely known; they
are unlikely to be in the vocabulary. The same problem can occur for a variety of other
terms: new technologies, previously unknown individuals, new words (e.g., hashtag), and
numbers.

One solution is to simply mark all such terms with a special token, (UNK). While
training the language model, we decide in advance on the vocabulary (often the K most
common terms), and mark all other terms in the training data as (UNK). If we do not want
to determine the vocabulary size in advance, an alternative approach is to simply mark
the first occurrence of each word type as (UNK).

But is often better to make distinctions about the likelihood of various unknown words.
This is particularly important in languages that have rich morphological systems, with
many inflections for each word. For example, Portuguese is only moderately complex
from a morphological perspective, yet each verb has dozens of inflected forms (see Fig-
ure 4.3b). In such languages, there will be many word types that we do not encounter in a
corpus, which are nonetheless predictable from the morphological rules of the language.
To use a somewhat contrived English example, if transfenestrate is in the vocabulary, our
language model should assign a non-zero probability to the past tense transfenestrated,
even if it does not appear in the training data.

One way to accomplish this is to supplement word-level language models with character-
level language models. Such models can use n-grams or RNNs, but with a fixed vocab-
ulary equal to the set of ASCII or Unicode characters. For example, Ling et al. (2015)
propose an LSTM model over characters, and Kim (2014) employ a convolutional neural
network. A more linguistically motivated approach is to segment words into meaningful
subword units, known as morphemes (see chapter 9). For example, Botha and Blunsom

5Bayourny, Y. and Strobel, W. (2017, January 6). US. intel report: Putin directed cy-
ber campaign to help Trump. Reuters. Retrieved from http://www.reuters.com/article/
us-usa-russia-cyber-idUSKBN14Q1T8 on January 7, 2017.

®https://catalog.ldc.upenn.edu/LDC2003T05
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(2014) induce vector representations for morphemes, which they build into a log-bilinear
language model; Bhatia et al. (2016) incorporate morpheme vectors into an LSTM.

Additional resources

A variety of neural network architectures have been applied to language modeling. No-
table earlier non-recurrent architectures include the neural probabilistic language model (Ben-
gio et al., 2003) and the log-bilinear language model (Mnih and Hinton, 2007). Much more
detail on these models can be found in the text by Goodfellow et al. (2016).

Exercises

1. Prove that n-gram language models give valid probabilities if the n-gram probabil-
ities are valid. Specifically, assume that,

V
Zp(wm | Wm—1, Wm—2,-- -, wmfn+1) =1 [643]
for all contexts (w1, Wm—2, ..., Wm—n41). Provethat ) p (w)=1forallw € V*,

where p, is the probability under an n-gram language model. Your proof should
proceed by induction. You should handle the start-of-string case p(w; | O, ...,0),
-1

but you need not handle the end-of-string token.

2. First, show that RNN language models are valid using a similar proof technique to
the one in the previous problem.

Next, let p, (w) indicate the probability of w under RNN r. An ensemble of RNN
language models computes the probability,

R
plw) = %Zpr(w). [6.44]
r=1

Does an ensemble of RNN language models compute a valid probability?

3. Consider a unigram language model over a vocabulary of size V. Suppose that a
word appears m times in a corpus with M tokens in total. With Lidstone smoothing
of o, for what values of m is the smoothed probability greater than the unsmoothed
probability?

4. Consider a simple language in which each token is drawn from the vocabulary V
with probability -, independent of all other tokens.
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Given a corpus of size M, what is the expectation of the fraction of all possible

bigrams that have zero count? You may assume V is large enough that & ~ 1.

5. Continuing the previous problem, determine the value of M such that the fraction
of bigrams with zero count is at most € € (0,1). As a hint, you may use the approxi-
mation In(1 + ) =~ a for a =~ 0.

6. Inreallanguages, words probabilities are neither uniform nor independent. Assume
that word probabilities are independent but not uniform, so that in general p(w) #
. Prove that the expected fraction of unseen bigrams will be higher than in the IID
case.

7. Consider a recurrent neural network with a single hidden unit and a sigmoid acti-

vation, h,, = 0(0hm—1 + zp,). Prove that if |§] < 1, then the gradient agh*jk goes to

7

zero as k — oo.

8. Zipf’s law states that if the word types in a corpus are sorted by frequency, then the
frequency of the word at rank r is proportional to ~*, where s is a free parameter,
usually around 1. (Another way to view Zipf’s law is that a plot of log frequency
against log rank will be linear.) Solve for s using the counts of the first and second
most frequent words, ¢; and c;.

9. Download the wikitext-2 dataset.® Read in the training data and compute word
counts. Estimate the Zipf’s law coefficient by,

1 (1
§ = oxp (MM) , [6.45]
|[logr|[3
where » = [1,2,3,...] is the vector of ranks of all words in the corpus, and ¢ =
[c1, €2, c3, . ..] is the vector of counts of all words in the corpus, sorted in descending

order.

Make a log-log plot of the observed counts, and the expected counts according to
Zipf's law. The sum ) >, r° = ((s) is the Riemann zeta function, available in
python’s scipy library as scipy.special.zeta.

10. Using the Pytorch library, train an LSTM language model from the Wikitext train-
ing corpus. After each epoch of training, compute its perplexity on the Wikitext
validation corpus. Stop training when the perplexity stops improving.

"This proof generalizes to vector hidden units by considering the largest eigenvector of the matrix © (Pas-
canu et al., 2013).

8Available at https://github.com/pytorch/examples/tree/master/word_language_
model/data/wikitext-2 in September 2018. The dataset is already tokenized, and already replaces rare
words with (UNK), so no preprocessing is necessary.
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Chapter 7

Sequence labeling

The goal of sequence labeling is to assign tags to words, or more generally, to assign
discrete labels to discrete elements in a sequence. There are many applications of se-
quence labeling in natural language processing, and chapter 8 presents an overview. For
now, we’ll focus on the classic problem of part-of-speech tagging, which requires tagging
each word by its grammatical category. Coarse-grained grammatical categories include
NOUNSs, which describe things, properties, or ideas, and VERBs, which describe actions
and events. Consider a simple input:

(7.1) They can fish.

A dictionary of coarse-grained part-of-speech tags might include NOUN as the only valid
tag for they, but both NOUN and VERB as potential tags for can and fish. A accurate se-
quence labeling algorithm should select the verb tag for both can and fish in (7.1), but it
should select noun for the same two words in the phrase can of fish.

7.1 Sequence labeling as classification

One way to solve a tagging problem is to turn it into a classification problem. Let f((w,m), y)
indicate the feature function for tag y at position m in the sequence w = (wy, wa, ..., wyr).
A simple tagging model would have a single base feature, the word itself:

f((w = they can fish,m = 1), N) =(they, N) [7.1]
f((w = they can fish,m = 2), V) =(can, V) [7.2]
f((w = they can fish,m = 3), V) =(fish, V). [7.3]

Here the feature function takes three arguments as input: the sentence to be tagged (e.g.,
they can fish), the proposed tag (e.g., N or V), and the index of the token to which this tag
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is applied. This simple feature function then returns a single feature: a tuple including
the word to be tagged and the tag that has been proposed. If the vocabulary size is V'
and the number of tags is K, then there are V' x K features. Each of these features must
be assigned a weight. These weights can be learned from a labeled dataset using a clas-
sification algorithm such as perceptron, but this isn’t necessary in this case: it would be
equivalent to define the classification weights directly, with 6,,, = 1 for the tag y most
frequently associated with word w, and 6,,, = 0 for all other tags.

However, it is easy to see that this simple classification approach cannot correctly tag
both they can fish and can of fish, because can and fish are grammatically ambiguous. To han-
dle both of these cases, the tagger must rely on context, such as the surrounding words.

We can build context into the feature set by incorporating the surrounding words as ad-
ditional features:

f((w = they can fish, 1), N) = {(wy, = they, y, = N),

Wm—1 =, ym = N),

W41 = can, Yy, = N)} [7.4]
f((w = they can fish,2), V)

(

(

(

{(wm = can, y,, = V),
(W—1 = they, ym = V),

(Wmt1 = fish, ym = V)} [7.5]

f((w = they can fish,3), V) = {(wy, = fish, y, = V),

(W1 = can, yy, = V),

(W1 =Wy, = V)} [7.6]

These features contain enough information that a tagger should be able to choose the
right tag for the word fish: words that come after can are likely to be verbs, so the feature
(wm—1 = can,y,, = V) should have a large positive weight.

However, even with this enhanced feature set, it may be difficult to tag some se-
quences correctly. One reason is that there are often relationships between the tags them-
selves. For example, in English it is relatively rare for a verb to follow another verb —
particularly if we differentiate MODAL verbs like can and should from more typical verbs,
like give, transcend, and befuddle. We would like to incorporate preferences against tag se-
quences like VERB-VERB, and in favor of tag sequences like NOUN-VERB. The need for
such preferences is best illustrated by a garden path sentence:

(7.2) The old man the boat.

Grammatically, the word the is a DETERMINER. When you read the sentence, what
part of speech did you first assign to old? Typically, this word is an ADJECTIVE — abbrevi-
ated as ] — which is a class of words that modify nouns. Similarly, man is usually a noun.
The resulting sequence of tags is D ] N D N. But this is a mistaken “garden path” inter-
pretation, which ends up leading nowhere. It is unlikely that a determiner would directly
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follow a noun,! and it is particularly unlikely that the entire sentence would lack a verb.
The only possible verb in (7.2) is the word man, which can refer to the act of maintaining
and piloting something — often boats. But if man is tagged as a verb, then old is seated
between a determiner and a verb, and must be a noun. And indeed, adjectives often have
a second interpretation as nouns when used in this way (e.g., the young, the restless). This
reasoning, in which the labeling decisions are intertwined, cannot be applied in a setting
where each tag is produced by an independent classification decision.

7.2 Sequence labeling as structure prediction

As an alternative, think of the entire sequence of tags as a label itself. For a given sequence
of words w = (wq,ws, ..., wyr), there is a set of possible taggings V(w) = YM  where
Y = {N,V,D,...} refers to the set of individual tags, and VM refers to the set of tag
sequences of length M. We can then treat the sequence labeling problem as a classification
problem in the label space Y (w),

y = argmax ¥V(w, y), [7.7]
yeV(w)
where y = (y1,¥2,...,ynm) is a sequence of M tags, and V¥ is a scoring function on pairs

of sequences, VM x YM — R. Such a function can include features that capture the rela-
tionships between tagging decisions, such as the preference that determiners not follow
nouns, or that all sentences have verbs.

Given that the label space is exponentially large in the length of the sequence M, can
it ever be practical to perform tagging in this way? The problem of making a series of in-
terconnected labeling decisions is known as inference. Because natural language is full of
interrelated grammatical structures, inference is a crucial aspect of natural language pro-
cessing. In English, it is not unusual to have sentences of length M = 20; part-of-speech
tag sets vary in size from 10 to several hundred. Taking the low end of this range, we have
|V(w1.0r)| = 10%°, one hundred billion billion possible tag sequences. Enumerating and
scoring each of these sequences would require an amount of work that is exponential in
the sequence length, so inference is intractable.

However, the situation changes when we restrict the scoring function. Suppose we
choose a function that decomposes into a sum of local parts,

M+1
\I’(w>y) = Z ?l)(wwm,ymfl,m), [7.8]
m=1

where each 1)(-) scores a local part of the tag sequence. Note that the sum goes up to M +1,
so that we can include a score for a special end-of-sequence tag, ¥ (wi.ns, %, yar, M + 1).
We also define a special tag to begin the sequence, yg = 0.

'The main exception occurs with ditransitive verbs, such as They gave the winner a trophy.
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In a linear model, local scoring function can be defined as a dot product of weights
and features,

1/1(w1:M7ym,?/m—17 m) =0- f(w7 ymvym—lam)‘ [79]

The feature vector f can consider the entire input w, and can look at pairs of adjacent
tags. This is a step up from per-token classification: the weights can assign low scores
to infelicitous tag pairs, such as noun-determiner, and high scores for frequent tag pairs,
such as determiner-noun and noun-verb.

In the example they can fish, a minimal feature function would include features for
word-tag pairs (sometimes called emission features) and tag-tag pairs (sometimes called
transition features):

M+1
f(w = they can fish,y =NV V) = > f(w,ym, Ym-1,m) [7.10]
m=1

=f(w,N,0,1)

+ f(w,V,N,2)

+ f(w,V,V,3)

+ f(w, $,V,4) [7.11]
=(wp, = they, ym = N) + (ym = N, ym—1 = 0)

+ (W, =can, ym = V) + (Ym = V, Ym-1 = N)

+ (Wi = fish, ym = V) + (Ym = V,ym-1 = V)

+ (Ym = ®,Ym-—1 = V). [7.12]

There are seven active features for this example: one for each word-tag pair, and one
for each tag-tag pair, including a final tag /1 = 4. These features capture the two main
sources of information for part-of-speech tagging in English: which tags are appropriate
for each word, and which tags tend to follow each other in sequence. Given appropriate
weights for these features, taggers can achieve high accuracy, even for difficult cases like
the old man the boat. We will now discuss how this restricted scoring function enables
efficient inference, through the Viterbi algorithm (Viterbi, 1967).
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7.3 The Viterbi algorithm

By decomposing the scoring function into a sum of local parts, it is possible to rewrite the
tagging problem as follows:

y =argmax V(w,y) [7.13]
yey(w)
M+1

= argmax Y (W, Ym, Y1, m) [7.14]

Yim
M+1

= argmax Z $m(Yms Ym—1), [7.15]

Yyim

where the final line simplifies the notation with the shorthand,
5m<ym7ym—1) £ w(wl:nymaym—lam)- [716]

This inference problem can be solved efficiently using dynamic programming, an al-
gorithmic technique for reusing work in recurrent computations. We begin by solving an
auxiliary problem: rather than finding the best tag sequence, we compute the score of the
best tag sequence,

M1
max ¥ (w, y1.)7) = max Z Sm (Ym, Ym—1)- [7.17]
Yi:m Yi:M m—1

This score involves a maximization over all tag sequences of length M, written max,,,,,.
This maximization can be broken into two pieces,

M+1
max ¥ (w, y1.ps) =max max Z S (Ym Ym—1)- [7.18]
Yi:Mm Ym Yi:M-—1 =1

Within the sum, only the final term s/ (4, yas) depends on y,s, so we can pull this term
out of the second maximization,

M
max\y(wvyle) = <Hle€}XSM+1(‘7yM)> + ( max Z Sm(ym,ym1)> : [719]
m=1

Yi:Mm Yi:M-1

The second term in Equation 7.19 has the same form as our original problem, with M
replaced by M —1. This indicates that the problem can be reformulated as a recurrence. We
do this by defining an auxiliary variable called the Viterbi variable v,,(k), representing
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Algorithm 11 The Viterbi algorithm. Each s,,(k, k') is a local score for tag y,, = k and
Ym-1 =K.
fork € {0,...K} do
Ul(k‘) = Sl(k‘, <>)
forme {2,...,M} do
fork € {0,...,K} do
Um (k) = maxys Sy (k, k') + vp—1(K)
b (k) = argmaxy, sy, (k, k') + vpm—1 (k')
yp = argmaxy, Spr+1 (¢, k) + var (k)
forme {M —1,...1} do
Ym = b (Ym+1)
return y;.)s

the score of the best sequence terminating in the tag k:

m
Um (ym) £ y?axl Z Sn (yna yn—l) [720]
m—1
= max Sm(yma ym—l) + max Z Sn(yn’ yn—l) [721]
Ym—1 Yi:m—2 =1
:ina)li $m(Yms> Ym—1) + Vm—1(Ym—1)- [7.22]

Each set of Viterbi variables is computed from the local score S, (ym, Ym—1), and from the
previous set of Viterbi variables. The initial condition of the recurrence is simply the score
for the first tag,

v1(y1) £s1(y1,0). [7.23]

The maximum overall score for the sequence is then the final Viterbi variable,

max W (wi.ar, Y1:m) =vn+1(4#). [7.24]
Yi:m
Thus, the score of the best labeling for the sequence can be computed in a single forward
sweep: first compute all variables v (-) from Equation 7.23, and then compute all variables
v2(-) from the recurrence in Equation 7.22, continuing until the final variable vysy;(4).

The Viterbi variables can be arranged in a structure known as a trellis, shown in Fig-
ure 7.1. Each column indexes a token m in the sequence, and each row indexes a tag in
Y; every vp,—1(k) is connected to every v,,(k’), indicating that v,, (k') is computed from
vm—1(k). Special nodes are set aside for the start and end states.
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Figure 7.1: The trellis representation of the Viterbi variables, for the example they can fish,
using the weights shown in Table 7.1.

The original goal was to find the best scoring sequence, not simply to compute its
score. But by solving the auxiliary problem, we are almost there. Recall that each vy, (k)
represents the score of the best tag sequence ending in that tag k in position m. To compute
this, we maximize over possible values of y,,—1. By keeping track of the “argmax” tag that
maximizes this choice at each step, we can walk backwards from the final tag, and recover
the optimal tag sequence. This is indicated in Figure 7.1 by the thick lines, which we trace
back from the final position. These backward pointers are written b, (k), indicating the
optimal tag y,,—1 on the path to Y;,, = k.

The complete Viterbi algorithm is shown in Algorithm 11. When computing the initial
Viterbi variables v; (-), the special tag ¢ indicates the start of the sequence. When comput-
ing the final tag Y3/, another special tag, 4 indicates the end of the sequence. These special
tags enable the use of transition features for the tags that begin and end the sequence: for
example, conjunctions are unlikely to end sentences in English, so we would like a low
score for syry1 (4, CC); nouns are relatively likely to appear at the beginning of sentences,
so we would like a high score for s (N, (), assuming the noun tag is compatible with the
tirst word token w.

Complexity If there are K tags and M positions in the sequence, then there are M x K
Viterbi variables to compute. Computing each variable requires finding a maximum over
K possible predecessor tags. The total time complexity of populating the trellis is there-
fore O(M K?), with an additional factor for the number of active features at each position.
After completing the trellis, we simply trace the backwards pointers to the beginning of
the sequence, which takes O(M) operations.
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N V ¢

they can fish ¢ -1 -2 —o0
N -2 -3 -3 N -3 -1 -1
Vv -1 -3 -1

v -10 -1 -3

(b) Weights for transition features. The
“from” tags are on the columns, and the “to”
tags are on the rows.

(a) Weights for emission features.

Table 7.1: Feature weights for the example trellis shown in Figure 7.1. Emission weights
from ¢ and ¢ are implicitly set to —oc.

7.3.1 Example

Consider the minimal tagset {N, V}, corresponding to nouns and verbs. Even in this
tagset, there is considerable ambiguity: for example, the words can and fish can each take
both tags. Of the 2 x 2 x 2 = 8 possible taggings for the sentence they can fish, four are
possible given these possible tags, and two are grammatical.?

The values in the trellis in Figure 7.1 are computed from the feature weights defined in
Table 7.1. We begin with v; (N), which has only one possible predecessor, the start tag ¢.
This score is therefore equal to s1 (N, ¢) = —2 — 1 = —3, which is the sum of the scores for
the emission and transition features respectively; the backpointer is b; (N) = . The score
for v1 (V) is computed in the same way: s1(V,{) = —10 — 2 = —12, and again b; (V) = 0.
The backpointers are represented in the figure by thick lines.

Things get more interesting at m = 2. The score v2(N) is computed by maximizing
over the two possible predecessors,

v2(N) =max(vi(N) + s2(N,N), v1(V) + s2(N, V)) [7.25]
=max(—3 —3 -3, -12-3-1)=-9 [7.26]
b2(N) =N. [7.27]

This continues until reaching v4(4), which is computed as,

v4(#) =max(v3(N) + s4(#,N),v3(V) + s4(#,V)) [7.28]
—max(—9+0—1, —11+0—1) [7.29]
— 10, [7.30]

so by(#) = N. As there is no emission w, the emission features have scores of zero.

’The tagging they/N can/V fish/N corresponds to the scenario of putting fish into cans, or perhaps of
firing them.
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To compute the optimal tag sequence, we walk backwards from here, next checking
b3(N) =V, and then b2(V) = N, and finally b;(N) = ¢. This yields y = (N, V, N), which
corresponds to the linguistic interpretation of the fishes being put into cans.

7.3.2 Higher-order features

The Viterbi algorithm was made possible by a restriction of the scoring function to local
parts that consider only pairs of adjacent tags. We can think of this as a bigram language
model over tags. A natural question is how to generalize Viterbi to tag trigrams, which
would involve the following decomposition:

M+2
‘lj(way) = Z f(waymaymflyym72,m)a [731]

m=1

where y_1 = ¢ and ypr12 = ¢.

One solution is to create a new tagset J(?) from the Cartesian product of the original
tagset with itself, Y2 = ) x ). The tags in this product space are ordered pairs, rep-
resenting adjacent tags at the token level: for example, the tag (N, V) would represent a
noun followed by a verb. Transitions between such tags must be consistent: we can have a
transition from (N, V) to (V, N) (corresponding to the tag sequence N V N), but not from
(N, V) to (N,N), which would not correspond to any coherent tag sequence. This con-
straint can be enforced in feature weights, with 0((, 4 (c.4)) = —oc if b # c. The remaining
feature weights can encode preferences for and against various tag trigrams.

In the Cartesian product tag space, there are K tags, suggesting that the time com-
plexity will increase to O(M K*). However, it is unnecessary to max over predecessor tag
bigrams that are incompatible with the current tag bigram. By exploiting this constraint,
it is possible to limit the time complexity to O(M K?). The space complexity grows to
O(M K?), since the trellis must store all possible predecessors of each tag. In general, the
time and space complexity of higher-order Viterbi grows exponentially with the order of
the tag n-grams that are considered in the feature decomposition.

7.4 Hidden Markov Models

The Viterbi sequence labeling algorithm is built on the scores s,,(y,3’). We will now
discuss how these scores can be estimated probabilistically. Recall from § 2.2 that the
probabilistic Naive Bayes classifier selects the label y to maximize p(y | ) « p(y, ). In
probabilistic sequence labeling, our goal is similar: select the tag sequence that maximizes
p(y | w) x p(y, w). The locality restriction in Equation 7.8 can be viewed as a conditional
independence assumption on the random variables y.
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Algorithm 12 Generative process for the hidden Markov model

Yo~ O, m<+1

repeat
ym ~ Categorical(Ay,, ;) > sample the current tag
wy, ~ Categorical(¢y,, ) > sample the current word
until y,,, = ¢ > terminate when the stop symbol is generated

Naive Bayes was introduced as a generative model — a probabilistic story that ex-
plains the observed data as well as the hidden label. A similar story can be constructed
for probabilistic sequence labeling: first, the tags are drawn from a prior distribution; next,
the tokens are drawn from a conditional likelihood. However, for inference to be tractable,
additional independence assumptions are required. First, the probability of each token
depends only on its tag, and not on any other element in the sequence:

M
p(w | y) =[] plwm | ym). [7.32]
m=1

Second, each tag y,, depends only on its predecessor,

M
p() = [I pm | ym-1), [7.33]
m=1

where yg = ¢ in all cases. Due to this Markov assumption, probabilistic sequence labeling
models are known as hidden Markov models (HMMs).

The generative process for the hidden Markov model is shown in Algorithm 12. Given
the parameters A and ¢, we can compute p(w, y) for any token sequence w and tag se-
quence y. The HMM is often represented as a graphical model (Wainwright and Jordan,
2008), as shown in Figure 7.2. This representation makes the independence assumptions
explicit: if a variable v; is probabilistically conditioned on another variable vy, then there
is an arrow vy — vp in the diagram. If there are no arrows between v; and vy, they
are conditionally independent, given each variable’s Markov blanket. In the hidden
Markov model, the Markov blanket for each tag y,, includes the “parent” y,,,—1, and the
“children” 1, +1 and w,,.3

It is important to reflect on the implications of the HMM independence assumptions.
A non-adjacent pair of tags y,, and y, are conditionally independent; if m < n and we
are given y,_1, then y,, offers no additional information about y,. However, if we are
not given any information about the tags in a sequence, then all tags are probabilistically
coupled.

*In general graphical models, a variable’s Markov blanket includes its parents, children, and its children’s
other parents (Murphy, 2012).
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Figure 7.2: Graphical representation of the hidden Markov model. Arrows indicate prob-
abilistic dependencies.

7.4.1 Estimation

The hidden Markov model has two groups of parameters:

Emission probabilities. The probability p_(wm | ¥m; @) is the emission probability, since
the words are treated as probabilistically “emitted”, conditioned on the tags.

Transition probabilities. The probability p,(ym | ¥m-1:A) is the transition probability,
since it assigns probability to each possible tag-to-tag transition.

Both of these groups of parameters are typically computed from smoothed relative
frequency estimation on a labeled corpus (see § 6.2 for a review of smoothing). The un-
smoothed probabilities are,

count(W,,, =14,Y,, = k)
count(Y;, = k)
count(Y,, =k, Y1 = k)
count(Y,,—1 = k) '

Ori 2Pt (W, =i | Yy = k) =

Me ZPr(Yy =K | Y1 = k) =

Smoothing is more important for the emission probability than the transition probability,
because the vocabulary is much larger than the number of tags.

7.4.2 Inference

The goal of inference in the hidden Markov model is to find the highest probability tag
sequence,
g = argmaxp(y | w). [7.34]
Y

Asin Naive Bayes, it is equivalent to find the tag sequence with the highest log-probability,
since the logarithm is a monotonically increasing function. It is furthermore equivalent
to maximize the joint probability p(y,w) = p(y | w) x p(w) x p(y | w), which is pro-
portional to the conditional probability. Putting these observations together, the inference

Under contract with MIT Press, shared under CC-BY-NC-ND license.



156 CHAPTER 7. SEQUENCE LABELING

problem can be reformulated as,

y = argmax logp(y, w). [7.35]
Yy

We can now apply the HMM independence assumptions:

log p(y, w) =logp(y) + logp(w | y) [7.36]
M+1
= Z log py(ym | ymfl) + log pw‘y(wm | ym) [7.37]
m=1
M+1
= Z 108 Ay 1 + 108 Py [7.38]
m=1
M+1
= Z $m(Ym» Ym—1), [7.39]
m=1
where,
Sm(ymv ymfl) £ log )‘ym7ym71 =+ log d)ym,’UJm7 [7-40]
and,
1, w=1
w=1 7.41
o {O, otherwise, [7.41]

which ensures that the stop tag 4 can only be applied to the final token W.

This derivation shows that HMM inference can be viewed as an application of the
Viterbi decoding algorithm, given an appropriately defined scoring function. The local
score Sy, (Ym, Ym—1) can be interpreted probabilistically,

Sm(Ym> Ym—1) =10g P, (Ym | Yym—1) +10gp,, 1, (wm | ym) [7.42]
=10g P(Ym, Wm | Ym—1)- [7.43]
Now recall the definition of the Viterbi variables,
Um(Ym) = max Sm(Yms Ym—1) + Vm—1(Ym—1) [7.44]
= max10g p(ym, W | Ym—1) + Vm—1(Ym-1). [7.45]

By setting vy, —1(Ym—1) = maxy, ., , 10 P(Y1:m—1, Wi:m—1), We obtain the recurrence,

VU (Ym) = max log P(Ym, Wm | Ym—1) + Jnax log P(Y1:m—1, Wi:m—1) [7.46]
= yflr}ai(l log p(Yms Wm | Ym—1) + 10gP(Y1:m—1, Wi:m—1) [7.47]
= max log p(Y1:m, Wiim)- [7.48]
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In words, the Viterbi variable vy, () is the log probability of the best tag sequence ending
in ¥, joint with the word sequence wi.,,. The log probability of the best complete tag
sequence is therefore,

max log p(Y1:Mm41, Wi:m+1) = Var41(4) [7.49]

*Viterbi as an example of the max-product algorithm The Viterbi algorithm can also be
implemented using probabilities, rather than log-probabilities. In this case, each vy, (ym)
is equal to,

Um (ym) = . a‘)_(l p(yl:m—lv Ym, wl:m) [7.50]
=max P(Ym, Wm | Ym—1) X max p(Y1:m—2, Ym—1, Wim—1) [7.51]

Ym—1 Yi:m—2
:inafl(p(ymvwm ‘ ym—l) X Um—l(ym—l) [752]
=Py (Wm | Ym) ¥ glafpy(ym | Ym—1) X Vm—1(Ym-1)- [7.53]

Each Viterbi variable is computed by maximizing over a set of products. Thus, the Viterbi
algorithm is a special case of the max-product algorithm for inference in graphical mod-
els (Wainwright and Jordan, 2008). However, the product of probabilities tends towards
zero over long sequences, so the log-probability version of Viterbi is recommended in
practical implementations.

7.5 Discriminative sequence labeling with features

Today, hidden Markov models are rarely used for supervised sequence labeling. This is
because HMMs are limited to only two phenomena:

e word-tag compatibility, via the emission probability py,y (wm | ym);
e local context, via the transition probability py (ym | Ym—1)-
The Viterbi algorithm permits the inclusion of richer information in the local scoring func-

tion ¢ (wi:a1, Ym, Ym—1,m), which can be defined as a weighted sum of arbitrary local fea-
tures,

w(wvymaymfbm) =0 f(wa Ym, ymflam% [754]

where f is a locally-defined feature function, and 0 is a vector of weights.
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The local decomposition of the scoring function ¥ is reflected in a corresponding de-
composition of the feature function:

M+1
V(w,y) = Y (W, Ym, Ym—1,m) [7.55]

m=1
M+1

= 0 fw,ym,ym-1,m) [7.56]

m=1
M+1
=0 - Z F(w, ym, Ym-1,m) [7.57]
m=1

=0 - £8P (4 4y 1), [7.58]

where f(81°°a) (1 y) is a global feature vector, which is a sum of local feature vectors,

M+1
FER (w, y) = D Fwins, Ym, ym-1,m), [7.59]
m=1

with yar+1 = 4 and yo = O by construction.

Let’s now consider what additional information these features might encode.

Word affix features. Consider the problem of part-of-speech tagging on the first four
lines of the poem Jabberwocky (Carroll, 1917):

(7.3) ’'Twas brillig, and the slithy toves
Did gyre and gimble in the wabe:
All mimsy were the borogoves,
And the mome raths outgrabe.

Many of these words were made up by the author of the poem, so a corpus would offer
no information about their probabilities of being associated with any particular part of
speech. Yet it is not so hard to see what their grammatical roles might be in this passage.
Context helps: for example, the word slithy follows the determiner the, so it is probably a
noun or adjective. Which do you think is more likely? The suffix -thy is found in a number
of adjectives, like frothy, healthy, pithy, worthy. It is also found in a handful of nouns —e.g.,
apathy, sympathy — but nearly all of these have the longer coda -pathy, unlike slithy. So the
suffix gives some evidence that slithy is an adjective, and indeed it is: later in the text we
find that it is a combination of the adjectives lithe and slimy.

“Morphology is the study of how words are formed from smaller linguistic units. chapter 9 touches on
computational approaches to morphological analysis. See Bender (2013) for an overview of the underlying
linguistic principles, and Haspelmath and Sims (2013) or Lieber (2015) for a full treatment.
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Fine-grained context. The hidden Markov model captures contextual information in the
form of part-of-speech tag bigrams. But sometimes, the necessary contextual information
is more specific. Consider the noun phrases this fish and these fish. Many part-of-speech
tagsets distinguish between singular and plural nouns, but do not distinguish between
singular and plural determiners; for example, the well known Penn Treebank tagset fol-
lows these conventions. A hidden Markov model would be unable to correctly label fish as
singular or plural in both of these cases, because it only has access to two features: the pre-
ceding tag (determiner in both cases) and the word (fish in both cases). The classification-
based tagger discussed in § 7.1 had the ability to use preceding and succeeding words as
features, and it can also be incorporated into a Viterbi-based sequence labeler as a local
feature.

Example. Consider the tagging D ] N (determiner, adjective, noun) for the sequence the
slithy toves, so that

w =the slithy toves
y=DJN.

Let’s create the feature vector for this example, assuming that we have word-tag features
(indicated by W), tag-tag features (indicated by 7'), and suffix features (indicated by M).
You can assume that you have access to a method for extracting the suffix -thy from slithy,
-es from toves, and @ from the, indicating that this word has no suffix.> The resulting
feature vector is,

f (the slithy toves, D ] N) = f(the slithy toves, D, {, 1)

+ f(the slithy toves, ], D, 2)

+ f(the slithy toves, N, ], 3)

+ f(the slithy toves, ¢, N, 4)

={(T:9,D),(W : the,D),(M : @,D),

(T :D,]), (W :slithy,]), (M : -thy,]),
(T :J,N), (W : toves,N), (M : -es,N)
(T:N,4)}.

These examples show that local features can incorporate information that lies beyond
the scope of a hidden Markov model. Because the features are local, it is possible to apply
the Viterbi algorithm to identify the optimal sequence of tags. The remaining question

>Such a system is called a morphological segmenter. The task of morphological segmentation is briefly
described in § 9.1.4; a well known segmenter is MORFESSOR (Creutz and Lagus, 2007). In real applications, a
typical approach is to include features for all orthographic suffixes up to some maximum number of charac-
ters: for slithy, we would have suffix features for -y, -hy, and -thy.
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is how to estimate the weights on these features. § 2.3 presented three main types of
discriminative classifiers: perceptron, support vector machine, and logistic regression.
Each of these classifiers has a structured equivalent, enabling it to be trained from labeled
sequences rather than individual tokens.

7.5.1 Structured perceptron

The perceptron classifier is trained by increasing the weights for features that are asso-
ciated with the correct label, and decreasing the weights for features that are associated
with incorrectly predicted labels:

g = argmax @ - f(x,y) [7.60]
yey
00+ 6 + f(x,y) — f(@.9). [7.61]

We can apply exactly the same update in the case of structure prediction,

y = argmax 0 - f(w,y) [7.62]
yeY(w)
00 0 + f(w,y) — f(w, ). [7.63]

This learning algorithm is called structured perceptron, because it learns to predict the
structured output y. The only difference is that instead of computing ¢ by enumerating
the entire set ), the Viterbi algorithm is used to efficiently search the set of possible tag-
gings, VM. Structured perceptron can be applied to other structured outputs as long as
efficient inference is possible. As in perceptron classification, weight averaging is crucial
to get good performance (see § 2.3.2).

Example For the example they can fish, suppose that the reference tag sequence is y(?) =
N V V, but the tagger incorrectly returns the tag sequence y = N V N. Assuming a model
with features for emissions (wy,, ¥,) and transitions (y,,—1, ym ), the corresponding struc-
tured perceptron update is:

Oisn,vy < O@snvy 1, Ogsn Ny < Ogfisnny — 1 [7.64]
Ovvy < Ovwvy+1  Oyn < Oyn) —1 [7.65]
Ove < Ove+1l,  One < One— L [7.66]

7.5.2 Structured support vector machines

Large-margin classifiers such as the support vector machine improve on the perceptron by
pushing the classification boundary away from the training instances. The same idea can
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be applied to sequence labeling. A support vector machine in which the output is a struc-

tured object, such as a sequence, is called a structured support vector machine (Tsochan-
taridis et al., 2004).6

In classification, we formalized the large-margin constraint as,

Yy #y .0 f(z,y?) -0 f(z,y) >1, [7.67]

requiring a margin of at least 1 between the scores for all labels y that are not equal to the
correct label 4. The weights 6 are then learned by constrained optimization (see § 2.4.2).

This idea can be applied to sequence labeling by formulating an equivalent set of con-
straints for all possible labelings J(w) for an input w. However, there are two problems.
First, in sequence labeling, some predictions are more wrong than others: we may miss
only one tag out of fifty, or we may get all fifty wrong. We would like our learning algo-
rithm to be sensitive to this difference. Second, the number of constraints is equal to the
number of possible labelings, which is exponentially large in the length of the sequence.

The first problem can be addressed by adjusting the constraint to require larger mar-
gins for more serious errors. Let ¢(y(*), §) > 0 represent the cost of predicting label § when
the true label is y(?). We can then generalize the margin constraint,

Vy,0 - f(w® y)— 0. f(w?, y) >y, y). [7.68]

This cost-augmented margin constraint specializes to the constraint in Equation 7.67 if we
choose the delta function c¢(y®,y) = 5 (()y® # y). A more expressive cost function is
the Hamming cost,

M
cy™,y) = > 5 # ym), [7.69]
m=1
which computes the number of errors in y. By incorporating the cost function as the
margin constraint, we require that the true labeling be seperated from the alternatives by
a margin that is proportional to the number of incorrect tags in each alternative labeling.

The second problem is that the number of constraints is exponential in the length
of the sequence. This can be addressed by focusing on the prediction ¢ that maximally
violates the margin constraint. This prediction can be identified by solving the following
cost-augmented decoding problem:

g =argmax 0 - f(w?,y) — 0 f(w y") + ey, y) [7.70]
y#y)

=argmax @ - f(w,y) + c(y?, y), [7.71]
y#y

%This model is also known as a max-margin Markov network (Taskar et al., 2003), emphasizing that the
scoring function is constructed from a sum of components, which are Markov independent.
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where in the second line we drop the term 60 - f (w(i), y(i)), which is constant in y.

We can now reformulate the margin constraint for sequence labeling,

0- f(w?,y?) — max (8- Fw?,y)+cy?.y)) > 0. [7.72]
yeY(w)

If the score for 8 - f(w?, y(?) is greater than the cost-augmented score for all alternatives,
then the constraint will be met. The name “cost-augmented decoding” is due to the fact
that the objective includes the standard decoding problem, maxgcy ) @ - f(w,¥), plus
an additional term for the cost. Essentially, we want to train against predictions that are
strong and wrong: they should score highly according to the model, yet incur a large loss
with respect to the ground truth. Training adjusts the weights to reduce the score of these
predictions.

For cost-augmented decoding to be tractable, the cost function must decompose into
local parts, just as the feature function f(-) does. The Hamming cost, defined above,
obeys this property. To perform cost-augmented decoding using the Hamming cost, we
need only to add features fy,(ym) = 6(ym # yr(,?), and assign a constant weight of 1 to
these features. Decoding can then be performed using the Viterbi algorithm.”

As with large-margin classifiers, it is possible to formulate the learning problem in an
unconstrained form, by combining a regularization term on the weights and a Lagrangian
for the constraints:

i Lielz - w4 @) ) (0
min 5 [[6]13 0(2;0 fw™, y™) o fw,y) +c(y ,y)} , [7.73]

In this formulation, C' is a parameter that controls the tradeoff between the regulariza-
tion term and the margin constraints. A number of optimization algorithms have been
proposed for structured support vector machines, some of which are discussed in § 2.4.2.
An empirical comparison by Kummerfeld et al. (2015) shows that stochastic subgradient
descent — which is essentially a cost-augmented version of the structured perceptron —
is highly competitive.

7.5.3 Conditional random fields

The conditional random field (CRF; Lafferty et al., 2001) is a conditional probabilistic
model for sequence labeling; just as structured perceptron is built on the perceptron clas-
sifier, conditional random fields are built on the logistic regression classifier.® The basic

7 Are there cost functions that do not decompose into local parts? Suppose we want to assign a constant
loss ¢ to any prediction ¢ in which & or more predicted tags are incorrect, and zero loss otherwise. This loss
function is combinatorial over the predictions, and thus we cannot decompose it into parts.

8The name “conditional random field” is derived from Markov random fields, a general class of models
in which the probability of a configuration of variables is proportional to a product of scores across pairs (or
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probability model is,
exp(¥(w,y))
y'eYy(w) GXp(\I/(w, y/))

p(y | w) = 5 [7.74]

This is almost identical to logistic regression (§ 2.5), but because the label space is now
sequences of tags, we require efficient algorithms for both decoding (searching for the
best tag sequence given a sequence of words w and a model ) and for normalization
(summing over all tag sequences). These algorithms will be based on the usual locality

assumption on the scoring function, ¥(w,y) = E%ill (W, Yms Ym—1,M).

Decoding in CRFs

Decoding — finding the tag sequence y that maximizes p(y | w) — is a direct applica-
tion of the Viterbi algorithm. The key observation is that the decoding problem does not
depend on the denominator of p(y | w),

§ = argmax|log p(y | w)

Yy
= argmax ¥ (y, w) — log Z exp ¥(y', w)
Y yey(w)
M+1
:arg;nax U(y,w) = argmax Z Sm(Ym Ym—1)-
m=1

This is identical to the decoding problem for structured perceptron, so the same Viterbi
recurrence as defined in Equation 7.22 can be used.

Learning in CRFs

As with logistic regression, the weights 6 are learned by minimizing the regularized neg-
ative log-probability,

N
A . .
(=516l = > togp(y® | w;6) [7.75]
=1
N
A : A _
=101 = >0 fw? y®)+log  exp (e : f(w(”,y’)) : [7.76]
=1 y/ey(w(i))

more generally, cliques) of variables in a factor graph. In sequence labeling, the pairs of variables include
all adjacent tags (Ym,ym—1). The probability is conditioned on the words w, which are always observed,
motivating the term “conditional” in the name.
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where A controls the amount of regularization. The final term in Equation 7.76 is a sum
over all possible labelings. This term is the log of the denominator in Equation 7.74, some-
times known as the partition function.® There are | Y| possible labelings of an input of
size M, so we must again exploit the decomposition of the scoring function to compute
this sum efficiently.

The sum >, () exp ¥(y, w) can be computed efficiently using the forward recur-
rence, which is closely related to the Viterbi recurrence. We first define a set of forward
variables, o, (v, ), which is equal to the sum of the scores of all paths leading to tag y,, at
position m:

Qm (ym) =S Z exp Z Sn(yn, yn—l) [7.77]
Yim—1 n=1
= > [ expsa(ynyn-1). [7.78]

Y1:m—1n=1

Note the similarity to the definition of the Viterbi variable, vy, (y,) = maxy,... > neq Sn(Yn, Yn—1)-
In the hidden Markov model, the Viterbi recurrence had an alternative interpretation as

the max-product algorithm (see Equation 7.53); analogously, the forward recurrence is
known as the sum-product algorithm, because of the form of [7.78]. The forward variable

can also be computed through a recurrence:

« (ym) = Z H €xXp Sn(ynaynfl) [7.79]
Y1:m—1n=1
= Z exp S (Ym Ym—1) Z H exp Sn(Yns Yn—1) [7.80]
Ym—1 Y1:m—2 n=1
= Z (eXp Sm(ymvym—l)) X am—l(ym—1)~ [781]
Ym—1

Using the forward recurrence, it is possible to compute the denominator of the condi-
tional probability,

M

> T(w,y) =Y (expsai1(®,yn) [] expsmYm, ym-1) [7.82]
yeY(w) Y1:M m=1
=an+1(4). [7.83]

The terminology of “potentials” and “partition functions” comes from statistical mechanics (Bishop,
2006).
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The conditional log-likelihood can be rewritten,

N
A , .
e=5 1161 = >0 f(w® y?) +loganrii(#). [7.84]
i=1

Probabilistic programming environments, such as TORCH (Collobert et al., 2011) and
DYNET (Neubig et al., 2017), can compute the gradient of this objective using automatic
differentiation. The programmer need only implement the forward algorithm as a com-
putation graph.

As in logistic regression, the gradient of the likelihood with respect to the parameters
is a difference between observed and expected feature counts:

N

dl ) . .

257 =M+ Elfi(w y)] = fi(w,y), [7.85]
J i=1

where f;(w,y) refers to the count of feature j for token sequence w(” and tag se-
quence y*). The expected feature counts are computed “under the hood” when automatic
differentiation is applied to Equation 7.84 (Eisner, 2016).

Before the widespread use of automatic differentiation, it was common to compute
the feature expectations from marginal tag probabilities p(y,, | w). These marginal prob-
abilities are sometimes useful on their own, and can be computed using the forward-
backward algorithm. This algorithm combines the forward recurrence with an equivalent
backward recurrence, which traverses the input from ws back to w.

*Forward-backward algorithm

Marginal probabilities over tag bigrams can be written as,'

M
Zyzym:k,ym,lzk' [1=1 xP 80 (Yns Yn—1)

P (Yot = K Vi = k| ) =
Sy TInL exp su (Y ¥y

[7.86]

The numerator sums over all tag sequences that include the transition (Y;,,—1 = k') —
(Y, = k). Because we are only interested in sequences that include the tag bigram, this
sum can be decomposed into three parts: the prefixes y1.,—1, terminating in Y;,,_1 = k/; the

Recall the notational convention of upper-case letters for random variables, e.g. Y,, and lower case
letters for specific values, e.g., ym, so that Y, = k is interpreted as the event of random variable Y, taking
the value k.
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Ym =k

am—1(K") expsm(k, k') Bm(k)

Figure 7.3: A schematic illustration of the computation of the marginal probability
Pr(Y,,—1 = k', Y,, = k), using the forward score a,,,—1 (k') and the backward score 3, (k).

transition (Y,,—1 = k') — (Y, = k); and the suffixes y.nr, beginning with the tag Y,,, = k:

M m—1
o JIepsnmvn-)= > ] epsa@nvn-1)
Y: Y=k, Ym 1=k n=1 Y1:m—1:Ym—1=k' n=1

X exp sm (k, k')
M+1

x ) II e sn(ynyn)- [7.87]

Ym:M:Ym=k n=m+1

The result is product of three terms: a score that sums over all the ways to get to the
position (Y,,,—1 = k'), a score for the transition from &’ to k, and a score that sums over
all the ways of finishing the sequence from (Y,, = k). The first term of Equation 7.87 is
equal to the forward variable, o1 (k"). The third term — the sum over ways to finish the
sequence — can also be defined recursively, this time moving over the trellis from right to
left, which is known as the backward recurrence:

M+1
Bn(k) 2 D> ] expsnyn, yn-1) [7.88]
Ym:M:Ym=k n=m
M+1
=Y expsp (K k) > IT expsu@n yn) [7.89]
k'ey ym+1:1\/I:Y'm:kl n=m+1
=Y expsmir (K, k) X By (k). [7.90]

k'ey

To understand this computation, compare with the forward recurrence in Equation 7.81.
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In practice, numerical stability demands that we work in the log domain,

log ay, (k) =log Z exp (log sy (k, k') + log a1 (K')) [7.91]
k'ey

10g Bm-—1(k) =log > _ exp (log s (K', k) + log B (K)) . [7.92]
k'ey

The application of the forward and backward probabilities is shown in Figure 7.3.
Both the forward and backward recurrences operate on the trellis, which implies a space
complexity O(M K). Because both recurrences require computing a sum over K terms at
each node in the trellis, their time complexity is O(M K?).

7.6 Neural sequence labeling

In neural network approaches to sequence labeling, we construct a vector representa-
tion for each tagging decision, based on the word and its context. Neural networks can
perform tagging as a per-token classification decision, or they can be combined with the
Viterbi algorithm to tag the entire sequence globally.

7.6.1 Recurrent neural networks

Recurrent neural networks (RNNs) were introduced in chapter 6 as a language model-
ing technique, in which the context at token m is summarized by a recurrently-updated
vector,

hy, =g9(xm, hm—1), m=1,2,... M,

where x,, is the vector embedding of the token w,, and the function g defines the recur-
rence. The starting condition h is an additional parameter of the model. The long short-
term memory (LSTM) is a more complex recurrence, in which a memory cell is through a
series of gates, avoiding repeated application of the non-linearity. Despite these bells and
whistles, both models share the basic architecture of recurrent updates across a sequence,
and both will be referred to as RNNs here.

A straightforward application of RNNs to sequence labeling is to score each tag y;, as
a linear function of h,,:

U (y) =By - hm [7.93]

Um = argmax 1/}m(y) : [7.94]
Y

The score 9, (y) can also be converted into a probability distribution using the usual soft-
max operation,

P(Z/ | wl:m) = Z
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Using this transformation, it is possible to train the tagger from the negative log-likelihood
of the tags, as in a conditional random field. Alternatively, a hinge loss or margin loss
objective can be constructed from the raw scores ., (y).

The hidden state h,,, accounts for information in the input leading up to position m,
but it ignores the subsequent tokens, which may also be relevant to the tag y,,. This can
be addressed by adding a second RNN, in which the input is reversed, running the recur-
rence from wy; to wy. This is known as a bidirectional recurrent neural network (Graves
and Schmidhuber, 2005), and is specified as:

B =g(@m, Bomy1), m=1,2,..., M. 7.96]

The hidden states of the left-to-right RNN are denoted ﬁm. The left-to-right and right-to-

%
left vectors are concatenated, h,, = [ﬁm, h ,,,]. The scoring function in Equation 7.93 is
applied to this concatenated vector.

Bidirectional RNN tagging has several attractive properties. Ideally, the representa-
tion h,, summarizes the useful information from the surrounding context, so that it is not
necessary to design explicit features to capture this information. If the vector h,, is an ad-
equate summary of this context, then it may not even be necessary to perform the tagging
jointly: in general, the gains offered by joint tagging of the entire sequence are diminished
as the individual tagging model becomes more powerful. Using backpropagation, the
word vectors x can be trained “end-to-end”, so that they capture word properties that are
useful for the tagging task. Alternatively, if limited labeled data is available, we can use
word embeddings that are “pre-trained” from unlabeled data, using a language modeling
objective (as in § 6.3) or a related word embedding technique (see chapter 14). It is even
possible to combine both fine-tuned and pre-trained embeddings in a single model.

Neural structure prediction The bidirectional recurrent neural network incorporates in-
formation from throughout the input, but each tagging decision is made independently.
In some sequence labeling applications, there are very strong dependencies between tags:
it may even be impossible for one tag to follow another. In such scenarios, the tagging
decision must be made jointly across the entire sequence.

Neural sequence labeling can be combined with the Viterbi algorithm by defining the
local scores as:

3m<yma ym—l) = ,Bym ~hpy + o —1,ym [797]

where h,;, is the RNN hidden state, 3,,, is a vector associated with tag v.,, and n,, 4.,
is a scalar parameter for the tag transition (y,,—1,ym). These local scores can then be
incorporated into the Viterbi algorithm for inference, and into the forward algorithm for
training. This model is shown in Figure 7.4. It can be trained from the conditional log-
likelihood objective defined in Equation 7.76, backpropagating to the tagging parameters
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Figure 7.4: Bidirectional LSTM for sequence labeling. The solid lines indicate computa-
tion, the dashed lines indicate probabilistic dependency, and the dotted lines indicate the
optional additional probabilistic dependencies between labels in the biLSTM-CRF.

B and 7, as well as the parameters of the RNN. This model is called the LSTM-CREF, due
to its combination of aspects of the long short-term memory and conditional random field
models (Huang et al., 2015).

The LSTM-CRF is especially effective on the task of named entity recognition (Lample
etal., 2016), a sequence labeling task that is described in detail in § 8.3. This task has strong
dependencies between adjacent tags, so structure prediction is especially important.

7.6.2 Character-level models

As in language modeling, rare and unseen words are a challenge: if we encounter a word
that was not in the training data, then there is no obvious choice for the word embed-
ding x,,. One solution is to use a generic unseen word embedding for all such words.
However, in many cases, properties of unseen words can be guessed from their spellings.
For example, whimsical does not appear in the Universal Dependencies (UD) English Tree-
bank, yet the suffix -al makes it likely to be adjective; by the same logic, unflinchingly is
likely to be an adverb, and barnacle is likely to be a noun.

In feature-based models, these morphological properties were handled by suffix fea-
tures; in a neural network, they can be incorporated by constructing the embeddings of
unseen words from their spellings or morphology. One way to do this is to incorporate
an additional layer of bidirectional RNNs, one for each word in the vocabulary (Ling
et al., 2015). For each such character-RNN, the inputs are the characters, and the output
is the concatenation of the final states of the left-facing and right-facing passes, ¢, =
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[ﬁg\q}g, %éw)}, where ﬁg\%’j is the final state of the right-facing pass for word w, and N,
is the number of characters in the word. The character RNN model is trained by back-
propagation from the tagging objective. On the test data, the trained RNN is applied to
out-of-vocabulary words (or all words), yielding inputs to the word-level tagging RNN.
Other approaches to compositional word embeddings are described in § 14.7.1.

7.6.3 Convolutional Neural Networks for Sequence Labeling

One disadvantage of recurrent neural networks is that the architecture requires iterating
through the sequence of inputs and predictions: each hidden vector h,, must be com-
puted from the previous hidden vector h,,_1, before predicting the tag v,,,. These iterative
computations are difficult to parallelize, and fail to exploit the speedups offered by graph-
ics processing units (GPUs) on operations such as matrix multiplication. Convolutional
neural networks achieve better computational performance by predicting each label y,,
from a set of matrix operations on the neighboring word embeddings, x,,_k.m+r (Col-
lobert et al., 2011). Because there is no hidden state to update, the predictions for each
ym can be computed in parallel. For more on convolutional neural networks, see § 3.4.
Character-based word embeddings can also be computed using convolutional neural net-
works (Santos and Zadrozny, 2014).

7.7 *Unsupervised sequence labeling

In unsupervised sequence labeling, the goal is to induce a hidden Markov model from a
corpus of unannotated text (w™"),w® ... wN)), where each w(® is a sequence of length
M. This is an example of the general problem of structure induction, which is the
unsupervised version of structure prediction. The tags that result from unsupervised se-
quence labeling might be useful for some downstream task, or they might help us to better
understand the language’s inherent structure. For part-of-speech tagging, it is common
to use a tag dictionary that lists the allowed tags for each word, simplifying the prob-
lem (Christodoulopoulos et al., 2010).

Unsupervised learning in hidden Markov models can be performed using the Baum-

Welch algorithm, which combines the forward-backward algorithm (§ 7.5.3) with expectation-
maximization (EM; § 5.1.2). In the M-step, the HMM parameters from expected counts:

[count(W =14,Y = k)]
Elcount(Y = k)]

E[count(Y,, = k,Y,,—1 = K')]

Elcount(Yy,—1 = k)]

FE
Pr(W =i |V = k) = dp =

PI‘(Ym = k ‘ Ym—l = k/) = )\k’,k =

Jacob Eisenstein. Draft of November 13, 2018.



7.7. *UNSUPERVISED SEQUENCE LABELING 171

The expected counts are computed in the E-step, using the forward and backward
recurrences. The local scores follow the usual definition for hidden Markov models,

sm(k, k') = logpp(wm | Yin = k; @) +logpp (Y =k | Y1 = K N). [7.98]

The expected transition counts for a single instance are,

Elcount(Yy, = k, Y1 = k') | w E:m (Yoot =K\ Yy =k | w) [7.99]

m=1

M
_ Zy:Ym:k,Ym—lzk‘/ [Tn=1 %P 80 (Yn, yn-1) . [7.100]

M
>y [nzr exp sn (¥, yr-1)

As described in § 7.5.3, these marginal probabilities can be computed from the forward-
backward recurrence,

Oémfl(k/) X €Xp Sm(ka k,) X Bm(k)
an+1(4)

Pr(Yin1 =k Y =k | w) = [7.101]

In a hidden Markov model, each element of the forward-backward computation has a
special interpretation:

am—l(k/) :p(Ym—l = k,u wl:m—l) [7102]
exp sm(k, k') =p(Yn = kywi | Yin—1 = k') [7.103]
ﬁm( ) (’wm-‘rl M ‘ Ym - k) [7-104]

Applying the conditional independence assumptions of the hidden Markov model (de-
fined in Algorithm 12), the product is equal to the joint probability of the tag bigram and
the entire input,

CVm—l(k,) X exp Sm(k7k) X Bm( ) = (Ym 1= K , Wiim— 1)
Xp(Yo =k, wp, | Yin—1 = k')
X P(Wmsrar | Y = F)
=p(Yi—1 =K, Yn =k, wi.n). [7.105]
Dividing by aas+1(4) = p(wi.ar) gives the desired probability,

amfl(k/) X Sm(kv k/) X Bm(k) :p(mel = k/vym = k‘, wl:M)
an1(4) p(wi.n)
=Pr(Yi1 =K, Y, =k | wi.y). [7.107]

[7.106]

The expected emission counts can be computed in a similar manner, using the product

am (k) X Bm (k).
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7.7.1 Linear dynamical systems

The forward-backward algorithm can be viewed as Bayesian state estimation in a discrete
state space. In a continuous state space, y,, € RE  the equivalent algorithm is the Kalman
smoother. It also computes marginals p(y,, | ®1.ar), using a similar two-step algorithm
of forward and backward passes. Instead of computing a trellis of values at each step, the
Kalman smoother computes a probability density function gy, (Ym; tm, Xm), character-
ized by a mean p,,, and a covariance ¥, around the latent state. Connections between the
Kalman smoother and the forward-backward algorithm are elucidated by Minka (1999)
and Murphy (2012).

7.7.2 Alternative unsupervised learning methods

As noted in § 5.5, expectation-maximization is just one of many techniques for structure
induction. One alternative is to use Markov Chain Monte Carlo (MCMC) sampling al-
gorithms, which are briefly described in § 5.5.1. For the specific case of sequence labeling,
Gibbs sampling can be applied by iteratively sampling each tag v,, conditioned on all the
others (Finkel et al., 2005):

p(ym ‘ y—mv'wl:M) X p(wm | ym)p(ym ‘ y—m)- [7.108]

Gibbs Sampling has been applied to unsupervised part-of-speech tagging by Goldwater
and Griffiths (2007). Beam sampling is a more sophisticated sampling algorithm, which
randomly draws entire sequences vyi.)s, rather than individual tags y,,; this algorithm
was applied to unsupervised part-of-speech tagging by Van Gael et al. (2009). Spectral
learning (see § 5.5.2) can also be applied to sequence labeling. By factoring matrices of
co-occurrence counts of word bigrams and trigrams (Song et al., 2010; Hsu et al., 2012), it
is possible to obtain globally optimal estimates of the transition and emission parameters,
under mild assumptions.

7.7.3 Semiring notation and the generalized viterbi algorithm

The Viterbi and Forward recurrences can each be performed over probabilities or log
probabilities, yielding a total of four closely related recurrences. These four recurrence
scan in fact be expressed as a single recurrence in a more general notation, known as
semiring algebra. Let the symbols @ and ® represent generalized addition and multipli-
cation respectively.!! Given these operators, a generalized Viterbi recurrence is denoted,

Um(k) = @ sm(k, k') @ vg1 (K). [7.109]
k'ey

na semiring, the addition and multiplication operators must both obey associativity, and multiplication
must distribute across addition; the addition operator must be commutative; there must be additive and
multiplicative identities 0 and 1, such that a ® 0 = a and a ® 1 = a; and there must be a multiplicative
annihilator 0, such that a ® 0 = 0.
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Each recurrence that we have seen so far is a special case of this generalized Viterbi
recurrence:

e In the max-product Viterbi recurrence over probabilities, the @ operation corre-
sponds to maximization, and the ® operation corresponds to multiplication.

e In the forward recurrence over probabilities, the @ operation corresponds to addi-
tion, and the ® operation corresponds to multiplication.

¢ In the max-product Viterbi recurrence over log-probabilities, the & operation corre-
sponds to maximization, and the ® operation corresponds to addition.?

e In the forward recurrence over log-probabilities, the & operation corresponds to log-
addition, a © b = log(e® + €”). The ® operation corresponds to addition.

The mathematical abstraction offered by semiring notation can be applied to the soft-
ware implementations of these algorithms, yielding concise and modular implementa-
tions. For example, in the OPENFST library, generic operations are parametrized by the
choice of semiring (Allauzen et al., 2007).

Exercises

1. Extend the example in § 7.3.1 to the sentence they can can fish, meaning that “they can
put fish into cans.” Build the trellis for this example using the weights in Table 7.1,
and identify the best-scoring tag sequence. If the scores for noun and verb are tied,
then you may assume that the backpointer always goes to noun.

2. Using the tagset ) = {N, V'}, and the feature set f(w, ym, Ym—1,m) = {(Wm, Ym): Ym, Ym—1)},
show that there is no set of weights that give the correct tagging for both they can
fish (N 'V V) and they can can fish (N V V N).

3. Work out what happens if you train a structured perceptron on the two exam-
ples mentioned in the previous problem, using the transition and emission features
(Yms Ym—1) and (Y, wy, ). Initialize all weights at 0, and assume that the Viterbi algo-
rithm always chooses N when the scores for the two tags are tied, so that the initial
prediction for they can fish is N N N.

4. Consider the garden path sentence, The old man the boat. Given word-tag and tag-tag
features, what inequality in the weights must hold for the correct tag sequence to
outscore the garden path tag sequence for this example?

!2This is sometimes called the tropical semiring, in honor of the Brazilian mathematician Imre Simon.
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Using the weights in Table 7.1, explicitly compute the log-probabilities for all pos-
sible taggings of the input fish can. Verify that the forward algorithm recovers the
aggregate log probability.

Sketch out an algorithm for a variant of Viterbi that returns the top-n label se-
quences. What is the time and space complexity of this algorithm?

Show how to compute the marginal probability Pr(y,,—2 = k,ym = k' | wi.a), in
terms of the forward and backward variables, and the potentials s, (¥, Yn—1)-

Suppose you receive a stream of text, where some of tokens have been replaced at
random with NOISE. For example:

e Source: I try all things, I achieve what I can
e Message received: I try NOISE NOISE, I NOISE what I NOISE

Assume you have access to a pre-trained bigram language model, which gives prob-
abilities p(wy, | wm—1). These probabilities can be assumed to be non-zero for all
bigrams.

Show how to use the Viterbi algorithm to recover the source by maximizing the
bigram language model log-probability. Specifically, set the scores s, (ym, Ym—1) SO
that the Viterbi algorithm selects a sequence of words that maximizes the bigram
language model log-probability, while leaving the non-noise tokens intact. Your
solution should not modify the logic of the Viterbi algorithm, it should only set the

scores Sy (Yms Ym—1)-

Let a(-) and f(+) indicate the forward and backward variables as defined in § 7.5.3.
Prove that anr41(#) = Bo(0) = X2, am(y)Bm(y),Ym € {1,2,..., M}.

Consider an RNN tagging model with a tanh activation function on the hidden
layer, and a hinge loss on the output. (The problem also works for the margin loss
and negative log-likelihood.) Suppose you initialize all parameters to zero: this in-
cludes the word embeddings that make up x, the transition matrix ©, the output
weights 3, and the initial hidden state hy.

a) Prove that for any data and for any gradient-based learning algorithm, all pa-
rameters will be stuck at zero.

b) Would a sigmoid activation function avoid this problem?
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Chapter 8

Applications of sequence labeling

Sequence labeling has applications throughout natural language processing. This chap-
ter focuses on part-of-speech tagging, morpho-syntactic attribute tagging, named entity
recognition, and tokenization. It also touches briefly on two applications to interactive
settings: dialogue act recognition and the detection of code-switching points between
languages.

8.1 Part-of-speech tagging

The syntax of a language is the set of principles under which sequences of words are
judged to be grammatically acceptable by fluent speakers. One of the most basic syntactic
concepts is the part-of-speech (POS), which refers to the syntactic role of each word in a
sentence. This concept was used informally in the previous chapter, and you may have
some intuitions from your own study of English. For example, in the sentence We like
vegetarian sandwiches, you may already know that we and sandwiches are nouns, like is a
verb, and vegetarian is an adjective. These labels depend on the context in which the word
appears: in she eats like a vegetarian, the word like is a preposition, and the word vegetarian
is a noun.

Parts-of-speech can help to disentangle or explain various linguistic problems. Recall
Chomsky’s proposed distinction in chapter 6:

(8.1) a. Colorless green ideas sleep furiously.
b. *Ideas colorless furiously green sleep.

One difference between these two examples is that the first contains part-of-speech tran-
sitions that are typical in English: adjective to adjective, adjective to noun, noun to verb,
and verb to adverb. The second example contains transitions that are unusual: noun to
adjective and adjective to verb. The ambiguity in a headline like,
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176 CHAPTER 8. APPLICATIONS OF SEQUENCE LABELING

(8.2) Teacher Strikes Idle Children

can also be explained in terms of parts of speech: in the interpretation that was likely
intended, strikes is a noun and idle is a verb; in the alternative explanation, strikes is a verb
and idle is an adjective.

Part-of-speech tagging is often taken as a early step in a natural language processing
pipeline. Indeed, parts-of-speech provide features that can be useful for many of the
tasks that we will encounter later, such as parsing (chapter 10), coreference resolution
(chapter 15), and relation extraction (chapter 17).

8.1.1 Parts-of-Speech

The Universal Dependencies project (UD) is an effort to create syntactically-annotated
corpora across many languages, using a single annotation standard (Nivre et al., 2016). As
part of this effort, they have designed a part-of-speech tagset, which is meant to capture
word classes across as many languages as possible.! This section describes that inventory,
giving rough definitions for each of tags, along with supporting examples.

Part-of-speech tags are morphosyntactic, rather than semantic, categories. This means
that they describe words in terms of how they pattern together and how they are inter-
nally constructed (e.g., what suffixes and prefixes they include). For example, you may
think of a noun as referring to objects or concepts, and verbs as referring to actions or
events. But events can also be nouns:

(8.3) ...the howling of the shrieking storm.

Here howling and shrieking are events, but grammatically they act as a noun and adjective
respectively.

The Universal Dependency part-of-speech tagset

The UD tagset is broken up into three groups: open class tags, closed class tags, and

“others.”

Open class tags Nearly all languages contain nouns, verbs, adjectives, and adverbs.?
These are all open word classes, because new words can easily be added to them. The
UD tagset includes two other tags that are open classes: proper nouns and interjections.

e Nouns (UD tag: NOUN) tend to describe entities and concepts, e.g.,

'The UD tagset builds on earlier work from Petrov et al. (2012), in which a set of twelve universal tags
was identified by creating mappings from tagsets for individual languages.
2One prominent exception is Korean, which some linguists argue does not have adjectives Kim (2002).
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(8.4) Toes are scarce among veteran blubber men.

In English, nouns tend to follow determiners and adjectives, and can play the subject
role in the sentence. They can be marked for the plural number by an -s suffix.

e Proper nouns (PROPN) are tokens in names, which uniquely specify a given entity,
(8.5) “Moby Dick?” shouted Ahab.

e Verbs (VERB), according to the UD guidelines, “typically signal events and ac-
tions.” But they are also defined grammatically: they “can constitute a minimal
predicate in a clause, and govern the number and types of other constituents which
may occur in a clause.”?

(8.6) “Moby Dick?” shouted Ahab.
(8.7) Shall we keep chasing this murderous fish?

English verbs tend to come in between the subject and some number of direct ob-
jects, depending on the verb. They can be marked for tense and aspect using suffixes
such as -ed and -ing. (These suffixes are an example of inflectional morphology,
which is discussed in more detail in § 9.1.4.)

e Adjectives (AD]) describe properties of entities,

(8.8) a. Shall we keep chasing this murderous fish?
b. Toes are scarce among veteran blubber men.

In the second example, scarce is a predicative adjective, linked to the subject by the
copula verb are. In contrast, murderous and veteran are attributive adjectives, modi-
tying the noun phrase in which they are embedded.

e Adverbs (ADV) describe properties of events, and may also modify adjectives or
other adverbs:

(8.9) a. Itisnot down on any map; true places never are.
b. ...treacherously hidden beneath the loveliest tints of azure

c. Not drowned entirely, though.
o Interjections (INTJ) are used in exclamations, e.g.,

(8.10) Aye aye! it was that accursed white whale that razed me.

3htt—p: / /universaldependencies.org/u/pos/VERB.html
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Closed class tags Closed word classes rarely receive new members. They are sometimes
referred to as function words — as opposed to content words — as they have little lexical
meaning of their own, but rather, help to organize the components of the sentence.

e Adpositions (ADP) describe the relationship between a complement (usually a noun
phrase) and another unit in the sentence, typically a noun or verb phrase.

(8.11) a. Toes are scarce among veteran blubber men.
b. Itis not down on any map.
c. Give not thyself up then.

As the examples show, English generally uses prepositions, which are adpositions
that appear before their complement. (An exception is ago, as in, we met three days
ago). Postpositions are used in other languages, such as Japanese and Turkish.

e Auxiliary verbs (AUX) are a closed class of verbs that add information such as
tense, aspect, person, and number.

(8.12) Shall we keep chasing this murderous fish?
What the white whale was to Ahab, has been hinted.
Ahab must use tools.

Meditation and water are wedded forever.

© 20 T o

Toes are scarce among veteran blubber men.

The final example is a copula verb, which is also tagged as an auxiliary in the UD
corpus.

e Coordinating conjunctions (CCON]) express relationships between two words or
phrases, which play a parallel role:

(8.13) Meditation and water are wedded forever.

e Subordinating conjunctions (SCON]) link two clauses, making one syntactically
subordinate to the other:

(8.14) It is the easiest thing in the world for a man to look as if he had a great
secret in him.

Note that

e Pronouns (PRON) are words that substitute for nouns or noun phrases.
(8.15) a. Beitwhat it will, I'll go to it laughing.

Jacob Eisenstein. Draft of November 13, 2018.



8.1. PART-OF-SPEECH TAGGING 179

b. Itry all things, I achieve what I can.

The example includes the personal pronouns I and it, as well as the relative pronoun
what. Other pronouns include myself, somebody, and nothing.

e Determiners (DET) provide additional information about the nouns or noun phrases
that they modify:

(8.16) a. What the white whale was to Ahab, has been hinted.
b. Itis not down on any map.

c. Itry all things ...
d

. Shall we keep chasing this murderous fish?

Determiners include articles (the), possessive determiners (their), demonstratives
(this murderous fish), and quantifiers (any map).

e Numerals (NUM) are an infinite but closed class, which includes integers, fractions,
and decimals, regardless of whether spelled out or written in numerical form.

(8.17) a. How then can this one small heart beat.

b. Iam going to put him down for the three hundredth.

e Particles (PART) are a catch-all of function words that combine with other words or
phrases, but do not meet the conditions of the other tags. In English, this includes
the infinitival to, the possessive marker, and negation.

(8.18) a. Better to sleep with a sober cannibal than a drunk Christian.
b. So man’s insanity is heaven’s sense

c. Itis not down on any map

As the second example shows, the possessive marker is not considered part of the
same token as the word that it modifies, so that man’s is split into two tokens. (Tok-
enization is described in more detail in § 8.4.) A non-English example of a particle
is the Japanese question marker ka:*

(8.19) Sensei desu ka
Teacheris ?

Is she a teacher?

“In this notation, the first line is the transliterated Japanese text, the second line is a token-to-token gloss,
and the third line is the translation.
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Other The remaining UD tags include punctuation (PUN) and symbols (SYM). Punc-
tuation is purely structural — e.g., commas, periods, colons — while symbols can carry
content of their own. Examples of symbols include dollar and percentage symbols, math-
ematical operators, emoticons, emojis, and internet addresses. A final catch-all tag is X,
which is used for words that cannot be assigned another part-of-speech category. The X
tag is also used in cases of code switching (between languages), described in § 8.5.

Other tagsets

Prior to the Universal Dependency treebank, part-of-speech tagging was performed us-
ing language-specific tagsets. The dominant tagset for English was designed as part of
the Penn Treebank (PTB), and it includes 45 tags — more than three times as many as
the UD tagset. This granularity is reflected in distinctions between singular and plural
nouns, verb tenses and aspects, possessive and non-possessive pronouns, comparative
and superlative adjectives and adverbs (e.g., faster, fastest), and so on. The Brown corpus
includes a tagset that is even more detailed, with 87 tags (Francis, 1964), including special
tags for individual auxiliary verbs such as be, do, and have.

Different languages make different distinctions, and so the PTB and Brown tagsets are
not appropriate for a language such as Chinese, which does not mark the verb tense (Xia,
2000); nor for Spanish, which marks every combination of person and number in the
verb ending; nor for German, which marks the case of each noun phrase. Each of these
languages requires more detail than English in some areas of the tagset, and less in other
areas. The strategy of the Universal Dependencies corpus is to design a coarse-grained
tagset to be used across all languages, and then to additionally annotate language-specific
morphosyntactic attributes, such as number, tense, and case. The attribute tagging task
is described in more detail in § 8.2.

Social media such as Twitter have been shown to require tagsets of their own (Gimpel
et al., 2011). Such corpora contain some tokens that are not equivalent to anything en-
countered in a typical written corpus: e.g., emoticons, URLs, and hashtags. Social media
also includes dialectal words like gonna (‘going to’, e.g. We gonna be fine) and Ima ('I'm
going to’, e.g., Ima tell you one more time), which can be analyzed either as non-standard
orthography (making tokenization impossible), or as lexical items in their own right. In
either case, it is clear that existing tags like NOUN and VERB cannot handle cases like Ima,
which combine aspects of the noun and verb. Gimpel et al. (2011) therefore propose a new
set of tags to deal with these cases.

8.1.2 Accurate part-of-speech tagging

Part-of-speech tagging is the problem of selecting the correct tag for each word in a sen-
tence. Success is typically measured by accuracy on an annotated test set, which is simply
the fraction of tokens that were tagged correctly.
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Baselines

A simple baseline for part-of-speech tagging is to choose the most common tag for each
word. For example, in the Universal Dependencies treebank, the word talk appears 96
times, and 85 of those times it is labeled as a VERB: therefore, this baseline will always
predict VERB for this word. For words that do not appear in the training corpus, the base-
line simply guesses the most common tag overall, which is NOUN. In the Penn Treebank,
this simple baseline obtains accuracy above 92%. A more rigorous evaluation is the accu-
racy on out-of-vocabulary words, which are not seen in the training data. Tagging these
words correctly requires attention to the context and the word’s internal structure.

Contemporary approaches

Conditional random fields and structured perceptron perform at or near the state-of-the-
art for part-of-speech tagging in English. For example, (Collins, 2002) achieved 97.1%
accuracy on the Penn Treebank, using a structured perceptron with the following base
features (originally introduced by Ratnaparkhi (1996)):

current word, w,,

previous words, Wy, —1, Wy,—2
next words, Wy, +1, Wyt2
previous tag, y,—1

previous two tags, (Ym—1, Ym—2)
for rare words:

— first k characters, up to k = 4
— last k characters, up to k = 4
— whether w,, contains a number, uppercase character, or hyphen.

Similar results for the PTB data have been achieved using conditional random fields (CRFs;
Toutanova et al., 2003).

More recent work has demonstrated the power of neural sequence models, such as the
long short-term memory (LSTM) (§ 7.6). Plank et al. (2016) apply a CRF and a bidirec-
tional LSTM to twenty-two languages in the UD corpus, achieving an average accuracy
of 94.3% for the CRF, and 96.5% with the bi-LSTM. Their neural model employs three
types of embeddings: fine-tuned word embeddings, which are updated during training;
pre-trained word embeddings, which are never updated, but which help to tag out-of-
vocabulary words; and character-based embeddings. The character-based embeddings
are computed by running an LSTM on the individual characters in each word, thereby
capturing common orthographic patterns such as prefixes, suffixes, and capitalization.
Extensive evaluations show that these additional embeddings are crucial to their model’s
success.
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word PTB tag UD tag UD attributes
The DT DET DEFINITE=DEF PRONTYPE=ART
German J] ADJ DEGREE=P0S
Expressionist NN NOUN NUMBER=SING
movement NN NOUN NUMBER=SING
was VBD AUX MoOD=IND NUMBER=SING PERSON=3
TENSE=PAST VERBFORM=FIN
destroyed VBN VERB TENSE=PAST VERBFORM=PART
VOICE=PASS
as IN ADP
a DT DET DEFINITE=IND PRONTYPE=ART
result NN NOUN NUMBER=SING
PUNCT

Figure 8.1: UD and PTB part-of-speech tags, and UD morphosyntactic attributes. Example
selected from the UD 1.4 English corpus.

8.2 Morphosyntactic Attributes

There is considerably more to say about a word than whether it is a noun or a verb: in En-
glish, verbs are distinguish by features such tense and aspect, nouns by number, adjectives
by degree, and so on. These features are language-specific: other languages distinguish
other features, such as case (the role of the noun with respect to the action of the sen-
tence, which is marked in languages such as Latin and German®) and evidentiality (the
source of information for the speaker’s statement, which is marked in languages such as
Turkish). In the UD corpora, these attributes are annotated as feature-value pairs for each
token.®

An example is shown in Figure 8.1. The determiner the is marked with two attributes:
PRONTYPE=ART, which indicates that it is an article (as opposed to another type of deter-

SCase is marked in English for some personal pronouns, e.g., She saw her, They saw them.

®The annotation and tagging of morphosyntactic attributes can be traced back to earlier work on Turk-
ish (Oflazer and Kurutz, 1994) and Czech (Haji¢ and Hladkd, 1998). MULTEXT-East was an early multilin-
gual corpus to include morphosyntactic attributes (Dimitrova et al., 1998).
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miner or pronominal modifier), and DEFINITE=DEF, which indicates that it is a definite
article (referring to a specific, known entity). The verbs are each marked with several
attributes. The auxiliary verb was is third-person, singular, past tense, finite (conjugated),
and indicative (describing an event that has happened or is currently happenings); the
main verb destroyed is in participle form (so there is no additional person and number
information), past tense, and passive voice. Some, but not all, of these distinctions are
reflected in the PTB tags VBD (past-tense verb) and VBN (past participle).

While there are thousands of papers on part-of-speech tagging, there is comparatively
little work on automatically labeling morphosyntactic attributes. Faruqui et al. (2016)
train a support vector machine classification model, using a minimal feature set that in-
cludes the word itself, its prefixes and suffixes, and type-level information listing all pos-
sible morphosyntactic attributes for each word and its neighbors. Mueller et al. (2013) use
a conditional random field (CRF), in which the tag space consists of all observed com-
binations of morphosyntactic attributes (e.g., the tag would be DEF+ART for the word
the in Figure 8.1). This massive tag space is managed by decomposing the feature space
over individual attributes, and pruning paths through the trellis. More recent work has
employed bidirectional LSTM sequence models. For example, Pinter et al. (2017) train
a bidirectional LSTM sequence model. The input layer and hidden vectors in the LSTM
are shared across attributes, but each attribute has its own output layer, culminating in
a softmax over all attribute values, e.g. y"MP*® € {SING,PLURAL,...}. They find that
character-level information is crucial, especially when the amount of labeled data is lim-
ited.

Evaluation is performed by first computing recall and precision for each attribute.
These scores can then be averaged at either the type or token level to obtain micro- or
macro-F-MEASURE. Pinter et al. (2017) evaluate on 23 languages in the UD treebank,
reporting a median micro- F-MEASURE of 0.95. Performance is strongly correlated with the
size of the labeled dataset for each language, with a few outliers: for example, Chinese is
particularly difficult, because although the dataset is relatively large (10° tokens in the UD
1.4 corpus), only 6% of tokens have any attributes, offering few useful labeled instances.

8.3 Named Entity Recognition

A classical problem in information extraction is to recognize and extract mentions of
named entities in text. In news documents, the core entity types are people, locations, and
organizations; more recently, the task has been extended to include amounts of money,
percentages, dates, and times. In item 8.20a (Figure 8.2), the named entities include: The
U.S. Army, an organization; Atlanta, a location; and May 14, 1864, a date. Named en-
tity recognition is also a key task in biomedical natural language processing, with entity
types including proteins, DNA, RNA, and cell lines (e.g., Collier et al., 2000; Ohta et al.,
2002). Figure 8.2 shows an example from the GENIA corpus of biomedical research ab-
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(8.20) a. The U.S. Army captured Atlanta on May 14 , 1864
B-ORG I-ORG I-ORG O B-LOC O B-DATE I-DATE I-DATE I-DATE

b. Number of glucocorticoid receptors — in lymphocytes and ...
O O B-PROTEIN I-PROTEIN O B-CELLTYPE O

Figure 8.2: BIO notation for named entity recognition. Example (8.20b) is drawn from the
GENIA corpus of biomedical documents (Ohta et al., 2002).

stracts.

A standard approach to tagging named entity spans is to use discriminative sequence
labeling methods such as conditional random fields. However, the named entity recogni-
tion (NER) task would seem to be fundamentally different from sequence labeling tasks
like part-of-speech tagging: rather than tagging each token, the goal in is to recover spans
of tokens, such as The United States Army.

This is accomplished by the BIO notation, shown in Figure 8.2. Each token at the
beginning of a name span is labeled with a B- prefix; each token within a name span is la-
beled with an I- prefix. These prefixes are followed by a tag for the entity type, e.g. B-LOC
for the beginning of a location, and I-PROTEIN for the inside of a protein name. Tokens
that are not parts of name spans are labeled as O. From this representation, the entity
name spans can be recovered unambiguously. This tagging scheme is also advantageous
for learning: tokens at the beginning of name spans may have different properties than
tokens within the name, and the learner can exploit this. This insight can be taken even
further, with special labels for the last tokens of a name span, and for unique tokens in
name spans, such as Atlanta in the example in Figure 8.2. This is called BILOU notation,
and it can yield improvements in supervised named entity recognition (Ratinov and Roth,
2009).

Feature-based sequence labeling Named entity recognition was one of the first applica-
tions of conditional random fields (McCallum and Li, 2003). The use of Viterbi decoding
restricts the feature function f(w,y) to be a sum of local features, Y f(w, Ym, Ym—1,m),
so that each feature can consider only local adjacent tags. Typical features include tag tran-
sitions, word features for w,, and its neighbors, character-level features for prefixes and
suffixes, and “word shape” features for capitalization and other orthographic properties.
As an example, base features for the word Army in the example in (8.20a) include:

(CURR-WORD:Army, PREV-WORD:U.S., NEXT-WORD:captured, PREFIX-1:A-,
PREFIX-2:Ar-, SUFFIX-1:-y, SUFFIX-2:-my, SHAPE: Xxxx)

Features can also be obtained from a gazetteer, which is a list of known entity names. For
example, the U.S. Social Security Administration provides a list of tens of thousands of
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(1) HX  EfH  EEH?
Japanese octopus how say

How to say octopus in Japanese?

(2) H NE A EJE

Japan essay fish how say

Figure 8.3: An example of tokenization ambiguity in Chinese (Sproat et al., 1996)

given names — more than could be observed in any annotated corpus. Tokens or spans
that match an entry in a gazetteer can receive special features; this provides a way to
incorporate hand-crafted resources such as name lists in a learning-driven framework.

Neural sequence labeling for NER Current research has emphasized neural sequence
labeling, using similar LSTM models to those employed in part-of-speech tagging (Ham-
merton, 2003; Huang et al., 2015; Lample et al., 2016). The bidirectional LSTM-CRF (Fig-
ure 7.4 in § 7.6) does particularly well on this task, due to its ability to model tag-to-tag
dependencies. However, Strubell et al. (2017) show that convolutional neural networks
can be equally accurate, with significant improvement in speed due to the efficiency of
implementing ConvNets on graphics processing units (GPUs). The key innovation in
this work was the use of dilated convolution, which is described in more detail in § 3.4.

8.4 Tokenization

A basic problem for text analysis, first discussed in § 4.3.1, is to break the text into a se-
quence of discrete tokens. For alphabetic languages such as English, deterministic scripts
usually suffice to achieve accurate tokenization. However, in logographic writing systems
such as Chinese script, words are typically composed of a small number of characters,
without intervening whitespace. The tokenization must be determined by the reader, with
the potential for occasional ambiguity, as shown in Figure 8.3. One approach is to match
character sequences against a known dictionary (e.g., Sproat et al., 1996), using additional
statistical information about word frequency. However, no dictionary is completely com-
prehensive, and dictionary-based approaches can struggle with such out-of-vocabulary
words.

Chinese word segmentation has therefore been approached as a supervised sequence
labeling problem. Xue et al. (2003) train a logistic regression classifier to make indepen-
dent segmentation decisions while moving a sliding window across the document. A set
of rules is then used to convert these individual classification decisions into an overall to-
kenization of the input. However, these individual decisions may be globally suboptimal,
motivating a structure prediction approach. Peng et al. (2004) train a conditional random
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tield to predict labels of START or NONSTART on each character. More recent work has
employed neural network architectures. For example, Chen et al. (2015) use an LSTM-
CREF architecture, as described in § 7.6: they construct a trellis, in which each tag is scored
according to the hidden state of an LSTM, and tag-tag transitions are scored according
to learned transition weights. The best-scoring segmentation is then computed by the
Viterbi algorithm.

8.5 Code switching

Multilingual speakers and writers do not restrict themselves to a single language. Code
switching is the phenomenon of switching between languages in speech and text (Auer,
2013; Poplack, 1980). Written code switching has become more common in online social
media, as in the following extract from the website of Canadian President Justin Trudeau:”

(8.21) Although everything written on this site est disponible en anglais
is available in English
and in French, my personal videos seront bilingues
will be bilingual

Accurately analyzing such texts requires first determining which languages are being
used. Furthermore, quantitative analysis of code switching can provide insights on the
languages themselves and their relative social positions.

Code switching can be viewed as a sequence labeling problem, where the goal is to la-
bel each token as a candidate switch point. In the example above, the words est, and, and
seront would be labeled as switch points. Solorio and Liu (2008) detect English-Spanish
switch points using a supervised classifier, with features that include the word, its part-of-
speech in each language (according to a supervised part-of-speech tagger), and the prob-
abilities of the word and part-of-speech in each language. Nguyen and Dogrucz (2013)
apply a conditional random field to the problem of detecting code switching between
Turkish and Dutch.

Code switching is a special case of the more general problem of word level language
identification, which Barman et al. (2014) address in the context of trilingual code switch-
ing between Bengali, English, and Hindi. They further observe an even more challenging
phenomenon: intra-word code switching, such as the use of English suffixes with Bengali
roots. They therefore mark each token as either (1) belonging to one of the three languages;
(2) a mix of multiple languages; (3) “universal” (e.g., symbols, numbers, emoticons); or
(4) undefined.

7As quoted in http://blogues.lapresse.ca/lagace/2008/09/08/
justin-trudeau-really-parfait-bilingue/, accessed August 21, 2017.
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Speaker Dialogue Act Utterance

A YES-NO-QUESTION So do you go college right now?

A ABANDONED Are yo-

B YES-ANSWER Yeah,

B STATEMENT It's my last year [laughter].

A DECLARATIVE-QUESTION  You're a, so you're a senior now.

B YES-ANSWER Yeah,

B STATEMENT I'm working on my projects trying to graduate [laughter]
A APPRECIATION Oh, good for you.

B BACKCHANNEL Yeah.

Figure 8.4: An example of dialogue act labeling (Stolcke et al., 2000)

8.6 Dialogue acts

The sequence labeling problems that we have discussed so far have been over sequences
of word tokens or characters (in the case of tokenization). However, sequence labeling
can also be performed over higher-level units, such as utterances. Dialogue acts are la-
bels over utterances in a dialogue, corresponding roughly to the speaker’s intention —
the utterance’s illocutionary force (Austin, 1962). For example, an utterance may state a
proposition (it is not down on any map), pose a question (shall we keep chasing this murderous
fish?), or provide a response (aye aye!). Stolcke et al. (2000) describe how a set of 42 dia-
logue acts were annotated for the 1,155 conversations in the Switchboard corpus (Godfrey
etal, 1992).8

An example is shown in Figure 8.4. The annotation is performed over UTTERANCES,
with the possibility of multiple utterances per conversational turn (in cases such as inter-
ruptions, an utterance may split over multiple turns). Some utterances are clauses (e.g., So
do you go to college right now?), while others are single words (e.g., yeah). Stolcke et al. (2000)
report that hidden Markov models (HMMSs) achieve 96% accuracy on supervised utter-
ance segmentation. The labels themselves reflect the conversational goals of the speaker:
the utterance yeah functions as an answer in response to the question you're a senior now,
but in the final line of the excerpt, it is a backchannel (demonstrating comprehension).

For task of dialogue act labeling, Stolcke et al. (2000) apply a hidden Markov model.
The probability p(w, | ¥) must generate the entire sequence of words in the utterance,
and it is modeled as a trigram language model (§ 6.1). Stolcke et al. (2000) also account
for acoustic features, which capture the prosody of each utterance — for example, tonal
and rhythmic properties of speech, which can be used to distinguish dialogue acts such

8Dialogue act modeling is not restricted to speech; it is relevant in any interactive conversation. For
example, Jeong et al. (2009) annotate a more limited set of speech acts in a corpus of emails and online
forums.
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as questions and answers. These features are handled with an additional emission distri-
bution, p(a, | ym), which is modeled with a probabilistic decision tree (Murphy, 2012).
While acoustic features yield small improvements overall, they play an important role in
distinguish questions from statements, and agreements from backchannels.

Recurrent neural architectures for dialogue act labeling have been proposed by Kalch-
brenner and Blunsom (2013) and Ji et al. (2016), with strong empirical results. Both models
are recurrent at the utterance level, so that each complete utterance updates a hidden state.
The recurrent-convolutional network of Kalchbrenner and Blunsom (2013) uses convolu-
tion to obtain a representation of each individual utterance, while Ji et al. (2016) use a
second level of recurrence, over individual words. This enables their method to also func-
tion as a language model, giving probabilities over sequences of words in a document.

Exercises

1. Using the Universal Dependencies part-of-speech tags, annotate the following sen-
tences. You may examine the UD tagging guidelines. Tokenization is shown with
whitespace. Don’t forget about punctuation.

(8.22) I try all things , [ achieve what I can .
It was that accursed white whale that razed me .

Better to sleep with a sober cannibal , than a drunk Christian .

fp T 9

Be it what it will , I ’1l go to it laughing .

2. Select three short sentences from a recent news article, and annotate them for UD
part-of-speech tags. Ask a friend to annotate the same three sentences without look-
ing at your annotations. Compute the rate of agreement, using the Kappa metric
defined in § 4.5.2. Then work together to resolve any disagreements.

3. Choose one of the following morphosyntactic attributes: MOOD, TENSE, VOICE. Re-
search the definition of this attribute on the universal dependencies website, http:
//universaldependencies.org/u/feat/index.html. Returning to the ex-
amples in the first exercise, annotate all verbs for your chosen attribute. It may be
helpful to consult examples from an English-language universal dependencies cor-
pus, availableathttps://github.com/UniversalDependencies/UD_English-EWT/
tree/master.

4. Download a dataset annotated for universal dependencies, such as the English Tree-
bankathttps://github.com/UniversalDependencies/UD_English-EWT/
tree/master. This corpus is already segmented into training, development, and
test data.
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a) First, train a logistic regression or SVM classifier using character suffixes: char-
acter n-grams up to length 4. Compute the recall, precision, and F'-MEASURE
on the development data.

b) Next, augment your classifier using the same character suffixes of the preced-
ing and succeeding tokens. Again, evaluate your classifier on heldout data.

c) Optionally, train a Viterbi-based sequence labeling model, using a toolkit such
as CRFSuite (http://www.chokkan.org/software/crfsuite/) or your
own Viterbi implementation. This is more likely to be helpful for attributes
in which agreement is required between adjacent words. For example, many
Romance languages require gender and number agreement for determiners,
nouns, and adjectives.

5. Provide BIO-style annotation of the named entities (person, place, organization,
date, or product) in the following expressions:

(8.23) a. The third mate was Flask, a native of Tisbury, in Martha’s Vineyard.

b. Its official Nintendo announced today that they Will release the Nin-
tendo 3DS in north America march 27 (Ritter et al., 2011).

c. Jessica Reif, a media analyst at Merrill Lynch & Co., said, “If they can
get up and running with exclusive programming within six months, it
doesn’t set the venture back that far.”?

6. Run the examples above through the online version of a named entity recogni-
tion tagger, such as the Allen NLP system here: http://demo.allennlp.org/named-
entity-recognition. Do the predicted tags match your annotations?

7. Build a whitespace tokenizer for English:

a) Using the NLTK library, download the complete text to the novel Alice in Won-
derland (Carroll, 1865). Hold out the final 1000 words as a test set.

b) Label each alphanumeric character as a segmentation point, y,, = 1 if m is
the final character of a token. Label every other character as y,, = 0. Then
concatenate all the tokens in the training and test sets.Make sure that the num-
ber of labels {,,}}_, is identical to the number of characters {c,,}*_, in your
concatenated datasets.

¢) Train a logistic regression classifier to predict y,,, using the surrounding char-
acters ¢;,—s5.m+5 as features. After training the classifier, run it on the test set,
using the predicted segmentation points to re-tokenize the text.

From the Message Understanding Conference (MUC-7) dataset (Chinchor and Robinson, 1997).
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d) Compute the per-character segmentation accuracy on the test set. You should
be able to get at least 88% accuracy.

e) Print out a sample of segmented text from the test set, e.g.

Thereareno mice in the air , I ’ m afraid , but y oumight cat
chabat , and that ’ svery like a mouse , youknow . But
docatseat bats , I wonder ?'

8. Perform the following extensions to your tokenizer in the previous problem.

a) Train a conditional random field sequence labeler, by incorporating the tag
bigrams (y,,—1,¥m) as additional features. You may use a structured predic-
tion library such as CRFSuite, or you may want to implement Viterbi yourself.
Compare the accuracy with your classification-based approach.

b) Compute the token-level performance: treating the original tokenization as
ground truth, compute the number of true positives (tokens that are in both
the ground truth and predicted tokenization), false positives (tokens that are in
the predicted tokenization but not the ground truth), and false negatives (to-
kens that are in the ground truth but not the predicted tokenization). Compute
the F-measure.

Hint: to match predicted and ground truth tokens, add “anchors” for the start

character of each token. The number of true positives is then the size of the
intersection of the sets of predicted and ground truth tokens.

c) Apply the same methodology in a more practical setting: tokenization of Chi-
nese, which is written without whitespace. You can find annotated datasets at
http://alias—i.com/lingpipe/demos/tutorial/chineseTokens/read-me.
html.
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Chapter 9

Formal language theory

We have now seen methods for learning to label individual words, vectors of word counts,
and sequences of words; we will soon proceed to more complex structural transforma-
tions. Most of these techniques could apply to counts or sequences from any discrete vo-
cabulary; there is nothing fundamentally linguistic about, say, a hidden Markov model.
This raises a basic question that this text has not yet considered: what is a language?

This chapter will take the perspective of formal language theory, in which a language
is defined as a set of strings, each of which is a sequence of elements from a finite alphabet.
For interesting languages, there are an infinite number of strings that are in the language,
and an infinite number of strings that are not. For example:

e the set of all even-length sequences from the alphabet {a, b}, e.g., {2, aa, ab, ba, bb, aaaa, aaab, . ..};

e the set of all sequences from the alphabet {a, b} that contain aaa as a substring, e.g.,
{aaa, aaaa, baaa, aaab, . . .};

e the set of all sequences of English words (drawn from a finite dictionary) that con-
tain at least one verb (a finite subset of the dictionary);

e the PYTHON programming language.

Formal language theory defines classes of languages and their computational prop-
erties. Of particular interest is the computational complexity of solving the membership
problem — determining whether a string is in a language. The chapter will focus on
three classes of formal languages: regular, context-free, and “mildly” context-sensitive
languages.

A key insight of 20th century linguistics is that formal language theory can be usefully
applied to natural languages such as English, by designing formal languages that cap-
ture as many properties of the natural language as possible. For many such formalisms, a
useful linguistic analysis comes as a byproduct of solving the membership problem. The
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membership problem can be generalized to the problems of scoring strings for their ac-
ceptability (as in language modeling), and of transducing one string into another (as in
translation).

9.1 Regular languages

If you have written a regular expression, then you have defined a regular language: a
regular language is any language that can be defined by a regular expression. Formally, a
regular expression can include the following elements:

o A literal character drawn from some finite alphabet >.
e The empty string e.

e The concatenation of two regular expressions RS, where R and S are both regular
expressions. The resulting expression accepts any string that can be decomposed
x = yz, where y is accepted by R and z is accepted by S.

e The alternation R | S, where R and S are both regular expressions. The resulting
expression accepts a string x if it is accepted by R or it is accepted by S.

e The Kleene star R*, which accepts any string x that can be decomposed into a se-
quence of strings which are all accepted by R.

e Parenthesization (R), which is used to limit the scope of the concatenation, alterna-
tion, and Kleene star operators.

Here are some example regular expressions:

e The set of all even length strings on the alphabet {a, b}: ((aa)|(ad)|(ba)|(bb))*
e The set of all sequences of the alphabet {«a, b} that contain aaa as a substring: (a|b)*aaa(a|b)*

e The set of all sequences of English words that contain at least one verb: W*VIW*,
where W is an alternation between all words in the dictionary, and V' is an alterna-
tion between all verbs (V C W).

This list does not include a regular expression for the Python programming language,
because this language is not regular — there is no regular expression that can capture its
syntax. We will discuss why towards the end of this section.

Regular languages are closed under union, intersection, and concatenation. This means
that if two languages L1 and L, are regular, then so are the languages L1 U Lo, L1 N Lo,
and the language of strings that can be decomposed as s = tu, with s € Ly and ¢t € Lo.
Regular languages are also closed under negation: if L is regular, then so is the language

L={s¢L}

Jacob Eisenstein. Draft of November 13, 2018.



9.1. REGULAR LANGUAGES 193

a b

b
start —

Figure 9.1: State diagram for the finite state acceptor M;.

9.1.1 Finite state acceptors

A regular expression defines a regular language, but does not give an algorithm for de-
termining whether a string is in the language that it defines. Finite state automata are
theoretical models of computation on regular languages, which involve transitions be-
tween a finite number of states. The most basic type of finite state automaton is the finite
state acceptor (FSA), which describes the computation involved in testing if a string is
a member of a language. Formally, a finite state acceptor is a tuple M = (Q, %, qo, F’ ),
consisting of:

e a finite alphabet ¥ of input symbols;
e a finite set of states Q = {qo,q1,.--,qn};

a start state ¢y € Q;
a set of final states ' C Q;

a transition function 6 : Q@ x (X U {e}) — 29. The transition function maps from a
state and an input symbol (or empty string €) to a set of possible resulting states.

A path in M is a sequence of transitions, m = t1,t2,...,tny, Where each t; traverses an
arc in the transition function . The finite state acceptor M accepts a string w if there is
an accepting path, in which the initial transition ¢; begins at the start state qo, the final
transition ¢y terminates in a final state in (), and the entire input w is consumed.

Example

Consider the following FSA, M;.

Y. ={a,b} [9.1]
Q ={q,¢1} [9.2]
F={q} [9.3]
6 ={(q0,a) = qo, (q0,0) = @1, (q1,b) = @1} [9.4]

This FSA defines a language over an alphabet of two symbols, a and b. The transition
function § is written as a set of arcs: (go,a) — g¢o says that if the machine is in state
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go and reads symbol a, it stays in go. Figure 9.1 provides a graphical representation of
M. Because each pair of initial state and symbol has at most one resulting state, M is
deterministic: each string w induces at most one accepting path. Note that there are no
transitions for the symbol a in state ¢;; if a is encountered in g1, then the acceptor is stuck,
and the input string is rejected.

What strings does M, accept? The start state is go, and we have to get to ¢, since this
is the only final state. Any number of a symbols can be consumed in ¢o, but a b symbol is
required to transition to ¢;. Once there, any number of b symbols can be consumed, but
an a symbol cannot. So the regular expression corresponding to the language defined by
M 1 is a*bb*.

Computational properties of finite state acceptors

The key computational question for finite state acceptors is: how fast can we determine
whether a string is accepted? For determistic FSAs, this computation can be performed
by Dijkstra’s algorithm, with time complexity O(V log V' + E), where V' is the number of
vertices in the FSA, and F is the number of edges (Cormen et al., 2009). Non-deterministic
FSAs (NFSAs) can include multiple transitions from a given symbol and state. Any NSFA
can be converted into a deterministic FSA, but the resulting automaton may have a num-
ber of states that is exponential in the number of size of the original NFSA (Mohri et al.,
2002).

9.1.2 Morphology as a regular language

Many words have internal structure, such as prefixes and suffixes that shape their mean-
ing. The study of word-internal structure is the domain of morphology, of which there
are two main types:

e Derivational morphology describes the use of affixes to convert a word from one
grammatical category to another (e.g., from the noun grace to the adjective graceful),
or to change the meaning of the word (e.g., from grace to disgrace).

e Inflectional morphology describes the addition of details such as gender, number,
person, and tense (e.g., the -ed suffix for past tense in English).

Morphology is a rich topic in linguistics, deserving of a course in its own right.! The
focus here will be on the use of finite state automata for morphological analysis. The

A good starting point would be a chapter from a linguistics textbook (e.g., Akmajian et al., 2010; Bender,
2013). A key simplification in this chapter is the focus on affixes at the sole method of derivation and inflec-
tion. English makes use of affixes, but also incorporates apophony, such as the inflection of foot to feet. Semitic
languages like Arabic and Hebrew feature a template-based system of morphology, in which roots are triples
of consonants (e.g., ktb), and words are created by adding vowels: kataba (Arabic: he wrote), kutub (books),
maktab (desk). For more detail on morphology, see texts from Haspelmath and Sims (2013) and Lieber (2015).
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current section deals with derivational morphology; inflectional morphology is discussed
in §9.1.4.

Suppose that we want to write a program that accepts only those words that are con-
structed in accordance with the rules of English derivational morphology:

(9.1) grace, graceful, gracefully, *gracelyful

a.
b. disgrace, *ungrace, disgraceful, disgracefully

0

allure, *allureful, alluring, alluringly

d. fairness, unfair, *disfair, fairly

(Recall that the asterisk indicates that a linguistic example is judged unacceptable by flu-
ent speakers of a language.) These examples cover only a tiny corner of English deriva-
tional morphology, but a number of things stand out. The suffix -ful converts the nouns
grace and disgrace into adjectives, and the suffix -ly converts adjectives into adverbs. These
suffixes must be applied in the correct order, as shown by the unacceptability of *grace-
lyful. The -ful suffix works for only some words, as shown by the use of alluring as the
adjectival form of allure. Other changes are made with prefixes, such as the derivation
of disgrace from grace, which roughly corresponds to a negation; however, fair is negated
with the un- prefix instead. Finally, while the first three examples suggest that the direc-
tion of derivation is noun — adjective — adverb, the example of fair suggests that the
adjective can also be the base form, with the -ness suffix performing the conversion to a
noun.

Can we build a computer program that accepts only well-formed English words, and
rejects all others? This might at first seem trivial to solve with a brute-force attack: simply
make a dictionary of all valid English words. But such an approach fails to account for
morphological productivity — the applicability of existing morphological rules to new
words and names, such as Trump to Trumpy and Trumpkin, and Clinton to Clintonian and
Clintonite. We need an approach that represents morphological rules explicitly, and for
this we will try a finite state acceptor.

The dictionary approach can be implemented as a finite state acceptor, with the vo-
cabulary ¥ equal to the vocabulary of English, and a transition from the start state to the
accepting state for each word. But this would of course fail to generalize beyond the origi-
nal vocabulary, and would not capture anything about the morphotactic rules that govern
derivations from new words. The first step towards a more general approach is shown in
Figure 9.2, which is the state diagram for a finite state acceptor in which the vocabulary
consists of morphemes, which include stems (e.g., grace, allure) and affixes (e.g., dis-, -ing,
-ly). This finite state acceptor consists of a set of paths leading away from the start state,
with derivational affixes added along the path. Except for ¢4, the states on these paths
are all final, so the FSA will accept disgrace, disgraceful, and disgracefully, but not dis-.
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Figure 9.2: A finite state acceptor for a fragment of English derivational morphology. Each
path represents possible derivations from a single root form.

This FSA can be minimized to the form shown in Figure 9.3, which makes the gen-
erality of the finite state approach more apparent. For example, the transition from ¢, to
¢, can be made to accept not only fair but any single-morpheme (monomorphemic) ad-
jective that takes -ness and -ly as suffixes. In this way, the finite state acceptor can easily
be extended: as new word stems are added to the vocabulary, their derived forms will be
accepted automatically. Of course, this FSA would still need to be extended considerably
to cover even this small fragment of English morphology. As shown by cases like music
— musical, athlete — athletic, English includes several classes of nouns, each with its own
rules for derivation.

The FSAs shown in Figure 9.2 and 9.3 accept allureing, not alluring. This reflects a dis-
tinction between morphology — the question of which morphemes to use, and in what
order — and orthography — the question of how the morphemes are rendered in written
language. Just as orthography requires dropping the e preceding the -ing suffix, phonol-
ogy imposes a related set of constraints on how words are rendered in speech. As we will
see soon, these issues can be handled by finite state!transducers, which are finite state
automata that take inputs and produce outputs.

9.1.3 Weighted finite state acceptors

According to the FSA treatment of morphology, every word is either in or out of the lan-
guage, with no wiggle room. Perhaps you agree that musicky and fishful are not valid
English words; but if forced to choose, you probably find a fishful stew or a musicky trib-
ute preferable to behaving disgracelyful. Rather than asking whether a word is acceptable,
we might like to ask how acceptable it is. Aronoff (1976, page 36) puts it another way:
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@ grace N —ful m -ly
N\

start —

allure

Figure 9.3: Minimization of the finite state acceptor shown in Figure 9.2.

“Though many things are possible in morphology, some are more possible than others.”
But finite state acceptors give no way to express preferences among technically valid
choices.

Weighted finite state acceptors (WFSAs) are generalizations of FSAs, in which each
accepting path is assigned a score, computed from the transitions, the initial state, and the
final state. Formally, a weighted finite state acceptor M = (Q, X, A, p, §) consists of:

e a finite set of states Q = {qo0,q1,.--,qn};
e a finite alphabet X of input symbols;

e an initial weight function, A : Q — R;

e a final weight function p: Q — R;

e a transition functiond : Q x ¥ x Q@ — R.

WEFSAs depart from the FSA formalism in three ways: every state can be an initial
state, with score \(q); every state can be an accepting state, with score p(q); transitions are
possible between any pair of states on any input, with a score 6(¢;,w, ¢j). Nonetheless,
FSAs can be viewed as a special case: for any FSA M we can build an equivalent WFSA
by setting A(q) = oo for all ¢ # qo, p(q) = oo for all ¢ ¢ F', and 6(¢;,w,q;j) = oo for all
transitions {(¢q1,w) — ¢2} that are not permitted by the transition function of M.

The total score for any path m = t1, 1o, ..., tx is equal to the sum of these scores,
N
d(m) = A(from-state(t1)) + Z d(tn) + p(to-state(ty)). [9.5]

n

A shortest-path algorithm is used to find the minimum-cost path through a WFSA for
string w, with time complexity O(E + V' log V'), where E is the number of edges and V is
the number of vertices (Cormen et al., 2009).2

2Shor’cest—path algorithms find the path with the minimum cost. In many cases, the path weights are log
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N-gram language models as WFSAs

In n-gram language models (see § 6.1), the probability of a sequence of tokens w1, wo, . .., war
is modeled as,
M
p(wi,...,wa) & [ Pp(wm | wm-1,.. . wm—ny1). [9.6]
m=1

The log probability under an n-gram language model can be modeled in a WFSA. First
consider a unigram language model. We need only a single state g, with transition scores
d(qo,w, qo) = log p,(w). The initial and final scores can be set to zero. Then the path score
for wy, wa, ..., wys is equal to,

M M
0+ (g0, wm, q0) +0 =" logp,(wpn). [9.7]

For an n-gram language model with n > 1, we need probabilities that condition on
the past history. For example, in a bigram language model, the transition weights must
represent log p, (wy, | wy,—1). The transition scoring function must somehow “remember”
the previous word or words. This can be done by adding more states: to model the bigram
probability p,(wy, | wy,—1), we need a state for every possible w,, 1 — a total of V' states.
The construction indexes each state g; by a context event w,,_1 = i. The weights are then
assigned as follows:

logPr(wm =7 | wm—1=1), w=j
—00, w # j
AMgi) =log Pr(wr =i | wo = 0J)
p(qi) =log Pr(wary1 = B | wy = ).

The transition function is designed to ensure that the context is recorded accurately:
we can move to state j on input w only if w = j; otherwise, transitioning to state j is
forbidden by the weight of —co. The initial weight function A(g;) is the log probability of
receiving ¢ as the first token, and the final weight function p(g;) is the log probability of
receiving an “end-of-string” token after observing wys = i.

*Semiring weighted finite state acceptors

The n-gram language model WFSA is deterministic: each input has exactly one accepting
path, for which the WFSA computes a score. In non-deterministic WESAs, a given input

probabilities, so we want the path with the maximum score, which can be accomplished by making each local
score into a negative log-probability.
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may have multiple accepting paths. In some applications, the score for the input is ag-
gregated across all such paths. Such aggregate scores can be computed by generalizing
WEFSAs with semiring notation, first introduced in § 7.7.3.

Let d() represent the total score for path m = ¢1, 2, ..., ty, which is computed as,
d(m) = A(from-state(?1)) ® 6(t1) ® 6(t2) @ ... ® I(tn) ® p(to-state(ty)). [9.8]

This is a generalization of Equation 9.5 to semiring notation, using the semiring multipli-
cation operator ® in place of addition.

Now let s(w) represent the total score for all paths II(w) that consume input w,

sw)= P d(n). [9.9]

mell(w)

Here, semiring addition (@) is used to combine the scores of multiple paths.

The generalization to semirings covers a number of useful special cases. In the log-
probability semiring, multiplication is defined as log p(x) ® log p(y) = log p(z) + logp(y),
and addition is defined as log p(z) @ logp(y) = log(p(z) + p(y)). Thus, s(w) represents
the log-probability of accepting input w, marginalizing over all paths 7 € II(w). In the
boolean semiring, the ® operator is logical conjunction, and the @ operator is logical
disjunction. This reduces to the special case of unweighted finite state acceptors, where
the score s(w) is a boolean indicating whether there exists any accepting path for w. In
the tropical semiring, the @ operator is a maximum, so the resulting score is the score of
the best-scoring path through the WFSA. The OPENFST toolkit uses semirings and poly-
morphism to implement general algorithms for weighted finite state automata (Allauzen
et al., 2007).

*Interpolated n-gram language models

Recall from § 6.2.3 that an interpolated n-gram language model combines the probabili-
ties from multiple n-gram models. For example, an interpolated bigram language model
computes the probability,

p(wm ‘ wmfl) = Alpl(wm) + >\2p2(wm | wmfl)a [9.10]

with p indicating the interpolated probability, p,, indicating the bigram probability, and
p, indicating the unigram probability. Setting A2 = (1 — A1) ensures that the probabilities
sum to one.

Interpolated bigram language models can be implemented using a non-deterministic
WESA (Knight and May, 2009). The basic idea is shown in Figure 9.4. In an interpolated
bigram language model, there is one state for each element in the vocabulary — in this
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b: Aapy(b | a)

b: Aapy(b | b)

a: Aapy(a|b)

Figure 9.4: WFSA implementing an interpolated bigram/unigram language model, on
the alphabet 3 = {a,b}. For simplicity, the WFSA is contrained to force the first token to
be generated from the unigram model, and does not model the emission of the end-of-
sequence token.

case, the states g4 and ¢g — which are capture the contextual conditioning in the bigram
probabilities. To model unigram probabilities, there is an additional state g;;, which “for-
gets” the context. Transitions out of ¢y involve unigram probabilities, p,(a) and p,(b);
transitions into gy emit the empty symbol ¢, and have probability A;, reflecting the inter-
polation weight for the unigram model. The interpolation weight for the bigram model is
included in the weight of the transition g4 — ¢5.

The epsilon transitions into gy make this WFSA non-deterministic. Consider the score
for the sequence (a,b,b). The initial state is gy, so the symbol a is generated with score
p,(a)® Next, we can generate b from the unigram model by taking the transition g4 — g3,
with score A\yp, (b | a). Alternatively, we can take a transition back to ¢ with score A,
and then emit b from the unigram model with score p, (b). To generate the final b token,
we face the same choice: emit it directly from the self-transition to ¢p, or transition to ¢rs
first.

The total score for the sequence (a, b, b) is the semiring sum over all accepting paths,

s(a,b,b) = (py(a) @ Aapy(b | @) ® Aap(b | b))
® (py(a) ® M @ py (b) @ dop(b | b))
@ (Pl(a) ® A2p,y(b | a) @ py(b) ® Pl(b))
@ (P1(a) @A @p(b) @p,(b) @ P1(b)) . [9.11]

Each line in Equation 9.11 represents the probability of a specific path through the WFSA.
In the probability semiring, ® is multiplication, so that each path is the product of each

3We could model the sequence-initial bigram probability p,(a | O), but for simplicity the WFSA does not
admit this possibility, which would require another state.
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transition weight, which are themselves probabilities. The @& operator is addition, so that
the total score is the sum of the scores (probabilities) for each path. This corresponds to
the probability under the interpolated bigram language model.

9.1.4 Finite state transducers

Finite state acceptors can determine whether a string is in a regular language, and weighted
finite state acceptors can compute a score for every string over a given alphabet. Finite
state transducers (FSTs) extend the formalism further, by adding an output symbol to each
transition. Formally, a finite state transducer is a tuple 7' = (Q, X, Q, A, p, ), with  repre-
senting an output vocabulary and the transition function ¢ : Q x (XUe¢) x (2Ue) x Q — R
mapping from states, input symbols, and output symbols to states. The remaining ele-
ments (), 3, A, p) are identical to their definition in weighted finite state acceptors (§9.1.3).
Thus, each path through the FST T transduces the input string into an output.

String edit distance

The edit distance between two strings s and ¢ is a measure of how many operations are
required to transform one string into another. There are several ways to compute edit
distance, but one of the most popular is the Levenshtein edit distance, which counts the
minimum number of insertions, deletions, and substitutions. This can be computed by
a one-state weighted finite state transducer, in which the input and output alphabets are
identical. For simplicity, consider the alphabet ¥ = Q = {a, b}. The edit distance can be
computed by a one-state transducer with the following transitions,

d(q,a,a,q) =0(q,b,b,q) =0 [9.12]
5(q,a,b,q) = 0(q,b,a,q) =1 [9.13]
0(q,a,€,q) = 0(q,b,¢,q) =1 [9.14]
0(q,€,a,q) = 0(q,€¢,b,q) =1 [9.15]

The state diagram is shown in Figure 9.5.

For a given string pair, there are multiple paths through the transducer: the best-
scoring path from dessert to desert involves a single deletion, for a total score of 1; the
worst-scoring path involves seven deletions and six additions, for a score of 13.

The Porter stemmer

The Porter (1980) stemming algorithm is a “lexicon-free” algorithm for stripping suffixes
from English words, using a sequence of character-level rules. Each rule can be described
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a/a,b/b:0
a/e,bje: 1
start —>@
e/a,e/b: 1
a/b,b/a: 1

Figure 9.5: State diagram for the Levenshtein edit distance finite state transducer. The
label z/y : c indicates a cost of ¢ for a transition with input z and output .

by an unweighted finite state transducer. The first rule is:

-sses — -ss  e.g., dresses — dress [9.16]
-les — -1 e.g., parties — parti [9.17]
-ss — -ss  e.g., dress — dress [9.18]

-s — € e.g.,cats — cat [9.19]

The final two lines appear to conflict; they are meant to be interpreted as an instruction
to remove a terminal -s unless it is part of an -ss ending. A state diagram to handle just
these final two lines is shown in Figure 9.6. Make sure you understand how this finite
state transducer handles cats, steps, bass, and basses.

Inflectional morphology

In inflectional morphology, word lemmas are modified to add grammatical information
such as tense, number, and case. For example, many English nouns are pluralized by the
suffix -s, and many verbs are converted to past tense by the suffix -ed. English’s inflectional
morphology is considerably simpler than many of the world’s languages. For example,
Romance languages (derived from Latin) feature complex systems of verb suffixes which
must agree with the person and number of the verb, as shown in Table 9.1.

The task of morphological analysis is to read a form like canto, and output an analysis
like CANTAR+VERB+PRESIND+1P+SING, where +PRESIND describes the tense as present
indicative, +1P indicates the first-person, and +SING indicates the singular number. The
task of morphological generation is the reverse, going from CANTAR+VERB+PRESIND+1P+SING
to canto. Finite state transducers are an attractive solution, because they can solve both
problems with a single model (Beesley and Karttunen, 2003). As an example, Figure 9.7
shows a fragment of a finite state transducer for Spanish inflectional morphology. The
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—\5/—\5

s/e
start H e
e/ a/s

e/b b/s

Figure 9.6: State diagram for final two lines of step la of the Porter stemming diagram.
States g3 and ¢4 “remember” the observations a and b respectively; the ellipsis ... repre-
sents additional states for each symbol in the input alphabet. The notation —s/-s is not
part of the FST formalism; it is a shorthand to indicate a set of self-transition arcs for every
input/output symbol except s.

infinitive cantar (to sing) comer (to eat) vivir (to live)
yo (1st singular) canto como vivo
tu (2nd singular) cantas comes vives
él, ella, usted (3rd singular) canta come vive
nosotros (1st plural) cantamos comemos vivimos
vosotros (2nd plural, informal) cantdis coméis vivis
ellos, ellas (3rd plural); )

cantan comen viven
ustedes (2nd plural)

Table 9.1: Spanish verb inflections for the present indicative tense. Each row represents
a person and number, and each column is a regular example from a class of verbs, as
indicated by the ending of the infinitive form.

input vocabulary X corresponds to the set of letters used in Spanish spelling, and the out-
put vocabulary (2 corresponds to these same letters, plus the vocabulary of morphological
features (e.g., +SING, +VERB). In Figure 9.7, there are two paths that take canto as input,
corresponding to the verb and noun meanings; the choice between these paths could be
guided by a part-of-speech tagger. By inversion, the inputs and outputs for each tran-
sition are switched, resulting in a finite state generator, capable of producing the correct
surface form for any morphological analysis.

Finite state morphological analyzers and other unweighted transducers can be de-
signed by hand. The designer’s goal is to avoid overgeneration — accepting strings or
making transductions that are not valid in the language — as well as undergeneration
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Q e/+NouN €/+Masc e/+SING O
o/ O
start—»i : c/c i : a/a i : n/n : : t/t e/a : : €/t Q €¢/+VERB 0/+PRESIND, e/+1p €/+SING @
b/\a/+F’m-‘,SIM)

Q €/+3p €/+SING @

Figure 9.7: Fragment of a finite state transducer for Spanish morphology. There are two
accepting paths for the input canto: canto+ NOUN+MASC+SING (masculine singular noun,
meaning a song), and cantar+VERB+PRESIND+1P+SING (I sing). There is also an accept-
ing path for canta, with output cantar+VERB+PRESIND+3P+SING (he/she sings).

— failing to accept strings or transductions that are valid. For example, a pluralization
transducer that does not accept foot/feet would undergenerate. Suppose we “fix” the trans-
ducer to accept this example, but as a side effect, it now accepts boot/beet; the transducer
would then be said to overgenerate. If a transducer accepts foot/foots but not foot/feet, then
it simultaneously overgenerates and undergenerates.

Finite state composition

Designing finite state transducers to capture the full range of morphological phenomena
in any real language is a huge task. Modularization is a classic computer science approach
for this situation: decompose a large and unwieldly problem into a set of subproblems,
each of which will hopefully have a concise solution. Finite state automata can be mod-
ularized through composition: feeding the output of one transducer 7} as the input to
another transducer 75, written 75 o 7. Formally, if there exists some y such that (z,y) € T}
(meaning that 7} produces output y on input z), and (y, z) € T, then (z,2) € (T o T1).
Because finite state transducers are closed under composition, there is guaranteed to be
a single finite state transducer that 73 = T3 o T3, which can be constructed as a machine
with one state for each pair of states in 7} and 75 (Mohri et al., 2002).

Example: Morphology and orthography In English morphology, the suffix -ed is added
to signal the past tense for many verbs: cook—cooked, want—wanted, etc. However, English
orthography dictates that this process cannot produce a spelling with consecutive ¢’s, so
that bake—baked, not bakeed. A modular solution is to build separate transducers for mor-
phology and orthography. The morphological transducer T, transduces from bake+PAST
to bake+ed, with the + symbol indicating a segment boundary. The input alphabet of T,
includes the lexicon of words and the set of morphological features; the output alphabet
includes the characters 4-z and the + boundary marker. Next, an orthographic transducer
To is responsible for the transductions cook+ed — cooked, and bake+ed — baked. The input
alphabet of Tp must be the same as the output alphabet for 7%, and the output alphabet
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is simply the characters a-z. The composed transducer (7o o Ths) then transduces from
bake+PAST to the spelling baked. The design of T} is left as an exercise.

Example: Hidden Markov models Hidden Markov models (chapter 7) can be viewed as
weighted finite state transducers, and they can be constructed by transduction. Recall that
a hidden Markov model defines a joint probability over words and tags, p(w,y), which
can be computed as a path through a trellis structure. This trellis is itself a weighted finite
state acceptor, with edges between all adjacent nodes ¢,,—1,; — ¢ j oninput Y, = j. The
edge weights are log-probabilities,

5(Qm—1,i7 Ym = ja Qm,j) = log p(wma Ym = ] | Ym—i = ]) [920]
=logp(wm | Yo = J) +1logPr(Y,, =7 | Yin—1 = 1). [9.21]

Because there is only one possible transition for each tag Y, this WESA is deterministic.
The score for any tag sequence {y,,}}/_, is the sum of these log-probabilities, correspond-
ing to the total log probability log p(w,y). Furthermore, the trellis can be constructed by
the composition of simpler FSTs.

e First, construct a “transition” transducer to represent a bigram probability model
over tag sequences, Tp. This transducer is almost identical to the n-gram language
model acceptor in § 9.1.3: there is one state for each tag, and the edge weights equal
to the transition log-probabilities, §(q;, j, j, ¢;) = logPr(Yy, = j | Yim—1 = 7). Note
that T is a transducer, with identical input and output at each arc; this makes it
possible to compose T with other transducers.

e Next, construct an “emission” transducer to represent the probability of words given
tags, Tr. This transducer has only a single state, with arcs for each word/tag pair,
3(qo, %, J,q0) = log Pr(W,,, = j | Y, = i). The input vocabulary is the set of all tags,
and the output vocabulary is the set of all words.

e The composition T o T is a finite state transducer with one state per tag, as shown
in Figure 9.8. Each state has V' x K outgoing edges, representing transitions to each
of the K other states, with outputs for each of the V' words in the vocabulary. The
weights for these edges are equal to,

5(Qi7Ym = j7 wmij) = 10gp(wm7Ym :j ‘ Ym—l - Z) [922]

e The trellis is a structure with M x K nodes, for each of the M words to be tagged and
each of the K tags in the tagset. It can be built by composition of (T o T7r) against an
unweighted chain FSA M ,(w) that is specially constructed to accept only a given
input wy, we, ..., wy, shown in Figure 9.9. The trellis for input w is built from the
composition M4 (w) o (Tg o Tr). Composing with the unweighted M 4(w) does not
affect the edge weights from (7z o T7), but it selects the subset of paths that generate
the word sequence w.
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N/aardvark _——"

N/abacus /

start —»

V/...
V/abacus
V/aardvark __—~

Figure 9.8: Finite state transducer for hidden Markov models, with a small tagset of nouns
and verbs. For each pair of tags (including self-loops), there is an edge for every word in
the vocabulary. For simplicity, input and output are only shown for the edges from the
start state. Weights are also omitted from the diagram; for each edge from ¢; to ¢;, the
weight is equal to log p(wm, Y = j | Yim—1 = 1), except for edges to the end state, which
are equal to log Pr(Y,, = 4 | Y,—1 =1).

St HQ They@ can Q fish @

Figure 9.9: Chain finite state acceptor for the input They can fish.

9.1.5 *Learning weighted finite state automata

In generative models such as n-gram language models and hidden Markov models, the
edge weights correspond to log probabilities, which can be obtained from relative fre-
quency estimation. However, in other cases, we wish to learn the edge weights from in-
put/output pairs. This is difficult in non-deterministic finite state automata, because we
do not observe the specific arcs that are traversed in accepting the input, or in transducing
from input to output. The path through the automaton is a latent variable.

Chapter 5 presented one method for learning with latent variables: expectation max-
imization (EM). This involves computing a distribution ¢(-) over the latent variable, and
iterating between updates to this distribution and updates to the parameters — in this
case, the arc weights. The forward-backward algorithm (§ 7.5.3) describes a dynamic
program for computing a distribution over arcs in the trellis structure of a hidden Markov
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model, but this is a special case of the more general problem for finite state automata.
Eisner (2002) describes an expectation semiring, which enables the expected number of
transitions across each arc to be computed through a semiring shortest-path algorithm.
Alternative approaches for generative models include Markov Chain Monte Carlo (Chi-
ang et al., 2010) and spectral learning (Balle et al., 2011).

Further afield, we can take a perceptron-style approach, with each arc corresponding
to a feature. The classic perceptron update would update the weights by subtracting the
difference between the feature vector corresponding to the predicted path and the feature
vector corresponding to the correct path. Since the path is not observed, we resort to a
latent variable perceptron. The model is described formally in § 12.4, but the basic idea
is to compute an update from the difference between the features from the predicted path
and the features for the best-scoring path that generates the correct output.

9.2 Context-free languages

Beyond the class of regular languages lie the context-free languages. An example of a
language that is context-free but not finite state is the set of arithmetic expressions with
balanced parentheses. Intuitively, to accept only strings in this language, an FSA would
have to “count” the number of left parentheses, and make sure that they are balanced
against the number of right parentheses. An arithmetic expression can be arbitrarily long,
yet by definition an FSA has a finite number of states. Thus, for any FSA, there will be
a string with too many parentheses to count. More formally, the pumping lemma is a
proof technique for showing that languages are not regular. It is typically demonstrated
for the simpler case a"b", the language of strings containing a sequence of a’s, and then
an equal-length sequence of ’s.*

There are at least two arguments for the relevance of non-regular formal languages
to linguistics. First, there are natural language phenomena that are argued to be iso-
morphic to a"b". For English, the classic example is center embedding, shown in Fig-
ure 9.10. The initial expression the dog specifies a single dog. Embedding this expression
into the cat ___ chased specifies a particular cat — the one chased by the dog. This cat can
then be embedded again to specify a goat, in the less felicitous but arguably grammatical
expression, the goat the cat the dog chased kissed, which refers to the goat who was kissed
by the cat which was chased by the dog. Chomsky (1957) argues that to be grammatical,
a center-embedded construction must be balanced: if it contains n noun phrases (e.g., the
cat), they must be followed by exactly n — 1 verbs. An FSA that could recognize such ex-
pressions would also be capable of recognizing the language a"b". Because we can prove
that no FSA exists for a™b™, no FSA can exist for center embedded constructions either. En-

*Details of the proof can be found in an introductory computer science theory textbook (e.g., Sipser, 2012).
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the dog
the cat thedog chased
the goat thecat thedog chased kissed

Figure 9.10: Three levels of center embedding

glish includes center embedding, and so the argument goes, English grammar as a whole
cannot be regular.

A more practical argument for moving beyond regular languages is modularity. Many
linguistic phenomena — especially in syntax — involve constraints that apply at long
distance. Consider the problem of determiner-noun number agreement in English: we
can say the coffee and these coffees, but not *these coffee. By itself, this is easy enough to model
in an FSA. However, fairly complex modifying expressions can be inserted between the
determiner and the noun:

a. the burnt coffee
b. the badly-ground coffee
the burnt and badly-ground Italian coffee

(9.2)

2 n

these burnt and badly-ground Italian coffees
* these burnt and badly-ground Italian coffee

Again, an FSA can be designed to accept modifying expressions such as burnt and badly-
ground Italian. Let’s call this FSA F);. To reject the final example, a finite state acceptor
must somehow “remember” that the determiner was plural when it reaches the noun cof-
fee at the end of the expression. The only way to do this is to make two identical copies
of Fyr: one for singular determiners, and one for plurals. While this is possible in the
finite state framework, it is inconvenient — especially in languages where more than one
attribute of the noun is marked by the determiner. Context-free languages facilitate mod-
ularity across such long-range dependencies.

9.2.1 Context-free grammars

Context-free languages are specified by context-free grammars (CFGs), which are tuples
(N, %, R, S) consisting of:

>The claim that arbitrarily deep center-embedded expressions are grammatical has drawn skepticism.
Corpus evidence shows that embeddings of depth greater than two are exceedingly rare (Karlsson, 2007),
and that embeddings of depth greater than three are completely unattested. If center-embedding is capped
at some finite depth, then it is regular.
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S —+SOrS | Num

OP —+ | — | x|+
NuM —NUM DIGIT | DI1GIT
DIGIT —0|1|2]|...|9

Figure 9.11: A context-free grammar for arithmetic expressions

e a finite set of non-terminals /V;
e a finite alphabet 3 of terminal symbols;
e aset of production rules R, each of the form A — 3, where A € N and 8 € (XUN)*;

e a designated start symbol S.

In the production rule A — f, the left-hand side (LHS) A must be a non-terminal;
the right-hand side (RHS) can be a sequence of terminals or non-terminals, {n,c}*,n €
N,o € ¥. A non-terminal can appear on the left-hand side of many production rules.
A non-terminal can appear on both the left-hand side and the right-hand side; this is a
recursive production, and is analogous to self-loops in finite state automata. The name
“context-free” is based on the property that the production rule depends only on the LHS,
and not on its ancestors or neighbors; this is analogous to Markov property of finite state
automata, in which the behavior at each step depends only on the current state, and not
on the path by which that state was reached.

A derivation 7 is a sequence of steps from the start symbol S to a surface string w € X%,
which is the yield of the derivation. A string w is in a context-free language if there is
some derivation from S yielding w. Parsing is the problem of finding a derivation for a
string in a grammar. Algorithms for parsing are described in chapter 10.

Like regular expressions, context-free grammars define the language but not the com-
putation necessary to recognize it. The context-free analogues to finite state acceptors are
pushdown automata, a theoretical model of computation in which input symbols can be
pushed onto a stack with potentially infinite depth. For more details, see Sipser (2012).

Example

Figure 9.11 shows a context-free grammar for arithmetic expressions suchas 1 +2+3 — 4.
In this grammar, the terminal symbols include the digits {1, 2, ..., 9} and the op-
erators {+, —, x, +}. The rules include the | symbol, a notational convenience that makes
it possible to specify multiple right-hand sides on a single line: the statement A — z | y
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S S S
\ e —
Num S Op S S Op S
\ T \ \ \ ! — T
Digit S Op S — Num Num + S Op S
! | \ | | \ \ \ \
4 Num + Num Digit Digit Num — Num
\ | ! ! \ \
Digit Digit 3 1 Digit Digit
! ! ! !
1 2 2 3

Figure 9.12: Some example derivations from the arithmetic grammar in Figure 9.11

defines two productions, A — x and A — y. This grammar is recursive: the non-termals S
and NUM can produce themselves.

Derivations are typically shown as trees, with production rules applied from the top
to the bottom. The tree on the left in Figure 9.12 describes the derivation of a single digit,
through the sequence of productions S -+ NUM — DIGIT — 4 (these are all unary pro-
ductions, because the right-hand side contains a single element). The other two trees in
Figure 9.12 show alternative derivations of the string 1 4 2 — 3. The existence of multiple
derivations for a string indicates that the grammar is ambiguous.

Context-free derivations can also be written out according to the pre-order tree traver-
sal.® For the two derivationsof 1 + 2 - 3 in Figure 9.12, the notation is:

(S (S (S (Num (Digit 1))) (Op +) (S (Num (Digit 2)))) (Op - ) (S (Num (Digit 3)))) [9.23]

(S (S (Num (Digit 1))) (Op +) (S (Num (Digit 2)) (Op - ) (S (Num (Digit 3))))). [9.24]

Grammar equivalence and Chomsky Normal Form

A single context-free language can be expressed by more than one context-free grammar.
For example, the following two grammars both define the language a"b" for n > 0.

S —aSb| ab
S —aSb | aabb | ab

Two grammars are weakly equivalent if they generate the same strings. Two grammars
are strongly equivalent if they generate the same strings via the same derivations. The
grammars above are only weakly equivalent.

®This is a depth-first left-to-right search that prints each node the first time it is encountered (Cormen
et al., 2009, chapter 12).
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In Chomsky Normal Form (CNF), the right-hand side of every production includes
either two non-terminals, or a single terminal symbol:

A —BC
A —a

All CFGs can be converted into a CNF grammar that is weakly equivalent. To convert a
grammar into CNF, we first address productions that have more than two non-terminals
on the RHS by creating new “dummy” non-terminals. For example, if we have the pro-
duction,

W= XYZ, [9.25]

it is replaced with two productions,
W =X W\X [9.26]
W\X =Y Z. [9.27]

In these productions, W\ X is a new dummy non-terminal. This transformation binarizes
the grammar, which is critical for efficient bottom-up parsing, as we will see in chapter 10.
Productions whose right-hand side contains a mix of terminal and non-terminal symbols
can be replaced in a similar fashion.

Unary non-terminal productions A — B are replaced as follows: for each production
B — « in the grammar, add a new production A — «a. For example, in the grammar
described in Figure 9.11, we would replace NUM — DIGIT with NUM — 1 | 2| ... | 9.
However, we keep the production NUM — NUM DIGIT, which is a valid binary produc-
tion.

9.2.2 Natural language syntax as a context-free language

Context-free grammars can be used to represent syntax, which is the set of rules that
determine whether an utterance is judged to be grammatical. If this representation were
perfectly faithful, then a natural language such as English could be transformed into a
formal language, consisting of exactly the (infinite) set of strings that would be judged to
be grammatical by a fluent English speaker. We could then build parsing software that
would automatically determine if a given utterance were grammatical.”

Contemporary theories generally do not consider natural languages to be context-free
(see § 9.3), yet context-free grammars are widely used in natural language parsing. The
reason is that context-free representations strike a good balance: they cover a broad range
of syntactic phenomena, and they can be parsed efficiently. This section therefore de-
scribes how to handle a core fragment of English syntax in context-free form, following

"To move beyond this cursory treatment of syntax, consult the short introductory manuscript by Bender
(2013), or the longer text by Akmajian et al. (2010).
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the conventions of the Penn Treebank (PTB; Marcus et al., 1993), a large-scale annotation
of English language syntax. The generalization to “mildly” context-sensitive languages is
discussed in § 9.3.

The Penn Treebank annotation is a phrase-structure grammar of English. This means
that sentences are broken down into constituents, which are contiguous sequences of
words that function as coherent units for the purpose of linguistic analysis. Constituents
generally have a few key properties:

Movement. Constituents can often be moved around sentences as units.

(9.3) a. Abigail gave (her brother) (a fish).
b. Abigail gave (a fish) to (her brother).

In contrast, gave her and brother a cannot easily be moved while preserving gram-
maticality.

Substitution. Constituents can be substituted by other phrases of the same type.

(9.4) a. Max thanked (his older sister).
b. Max thanked (her).

In contrast, substitution is not possible for other contiguous units like Max thanked
and thanked his.

Coordination. Coordinators like and and or can conjoin constituents.

(9.5) a. (Abigail) and (her younger brother) bought a fish.
b. Abigail (bought a fish) and (gave it to Max).
c. Abigail (bought) and (greedily ate) a fish.

Units like brother bought and bought a cannot easily be coordinated.

These examples argue for units such as her brother and bought a fish to be treated as con-
stituents. Other sequences of words in these examples, such as Abigail gave and brother
a fish, cannot be moved, substituted, and coordinated in these ways. In phrase-structure
grammar, constituents are nested, so that the senator from New Jersey contains the con-
stituent from New Jersey, which in turn contains New Jersey. The sentence itself is the max-
imal constituent; each word is a minimal constituent, derived from a unary production
from a part-of-speech tag. Between part-of-speech tags and sentences are phrases. In
phrase-structure grammar, phrases have a type that is usually determined by their head
word: for example, a noun phrase corresponds to a noun and the group of words that
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modify it, such as her younger brother; a verb phrase includes the verb and its modifiers,
such as bought a fish and greedily ate it.

In context-free grammars, each phrase type is a non-terminal, and each constituent is
the substring that the non-terminal yields. Grammar design involves choosing the right
set of non-terminals. Fine-grained non-terminals make it possible to represent more fine-
grained linguistic phenomena. For example, by distinguishing singular and plural noun
phrases, it is possible to have a grammar of English that generates only sentences that
obey subject-verb agreement. However, enforcing subject-verb agreement is considerably
more complicated in languages like Spanish, where the verb must agree in both person
and number with subject. In general, grammar designers must trade off between over-
generation — a grammar that permits ungrammatical sentences — and undergeneration
— a grammar that fails to generate grammatical sentences. Furthermore, if the grammar is
to support manual annotation of syntactic structure, it must be simple enough to annotate
efficiently.

9.2.3 A phrase-structure grammar for English

To better understand how phrase-structure grammar works, let’s consider the specific
case of the Penn Treebank grammar of English. The main phrase categories in the Penn
Treebank (PTB) are based on the main part-of-speech classes: noun phrase (NP), verb
phrase (VP), prepositional phrase (PP), adjectival phrase (AD]P), and adverbial phrase
(ADVP). The top-level category is S, which conveniently stands in for both “sentence”
and the “start” symbol. Complement clauses (e.g., I take the good old fashioned ground that
the whale is a fish) are represented by the non-terminal SBAR. The terminal symbols in
the grammar are individual words, which are generated from unary productions from
part-of-speech tags (the PTB tagset is described in § 8.1).

This section describes some of the most common productions from the major phrase-
level categories, explaining how to generate individual tag sequences. The production
rules are approached in a “theory-driven” manner: first the syntactic properties of each
phrase type are described, and then some of the necessary production rules are listed. But
it is important to keep in mind that the Penn Treebank was produced in a “data-driven”
manner. After the set of non-terminals was specified, annotators were free to analyze each
sentence in whatever way seemed most linguistically accurate, subject to some high-level
guidelines. The grammar of the Penn Treebank is simply the set of productions that were
required to analyze the several million words of the corpus. By design, the grammar
overgenerates — it does not exclude ungrammatical sentences. Furthermore, while the
productions shown here cover some of the most common cases, they are only a small
fraction of the several thousand different types of productions in the Penn Treebank.
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Sentences

The most common production rule for sentences is,
S —-NP VP [9.28]

which accounts for simple sentences like Abigail ate the kimchi — as we will see, the direct
object the kimchi is part of the verb phrase. But there are more complex forms of sentences
as well:

S —-ADVP NP VP Unfortunately Abigail ate the kimchi. [9.29]
S—=5CcS Abigail ate the kimchi and Max had a burger. [9.30]
S —-VP Eat the kimchi. [9.31]

where ADVP is an adverbial phrase (e.g., unfortunately, very unfortunately) and CC is a
coordinating conjunction (e.g., and, but).3

Noun phrases

Noun phrases refer to entities, real or imaginary, physical or abstract: Asha, the steamed
dumpling, parts and labor, nobody, the whiteness of the whale, and the rise of revolutionary syn-
dicalism in the early twentieth century. Noun phrase productions include “bare” nouns,
which may optionally follow determiners, as well as pronouns:

NP —NN | NNS | NNP | PrRP [9.32]
NP —DET NN | DET NNsS | DET NNP [9.33]

The tags NN, NNs, and NNP refer to singular, plural, and proper nouns; PRP refers to
personal pronouns, and DET refers to determiners. The grammar also contains terminal
productions from each of these tags, e.g., PRP — I | you | we | ....

Noun phrases may be modified by adjectival phrases (AD]JP; e.g., the small Russian dog)
and numbers (CD; e.g., the five pastries), each of which may optionally follow a determiner:

NP —AD]JP NN | ADJP NNs | DET ADJP NN | DET ADJP NNs [9.34]
NP -CD NNs | DETCDNNS | ... [9.35]

Some noun phrases include multiple nouns, such as the liberation movement and an
antelope horn, necessitating additional productions:

NP —-NN NN | NN NNS | DETNNNN | ... [9.36]

®Notice that the grammar does not include the recursive production S — ADVP S. It may be helpful to
think about why this production would cause the grammar to overgenerate.
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These multiple noun constructions can be combined with adjectival phrases and cardinal
numbers, leading to a large number of additional productions.

Recursive noun phrase productions include coordination, prepositional phrase attach-
ment, subordinate clauses, and verb phrase adjuncts:

NP —NP Cc NP e.g., the red and the black [9.37]
NP —NP PP e.g., the President of the Georgia Institute of Technology [9.38]
NP —NP SBAR e.g., a whale which he had wounded [9.39]
NP —-NP VP e.g., a whale taken near Shetland [9.40]

These recursive productions are a major source of ambiguity, because the VP and PP non-
terminals can also generate NP children. Thus, the the President of the Georgia Institute of
Technology can be derived in two ways, as can a whale taken near Shetland in October.

But aside from these few recursive productions, the noun phrase fragment of the Penn
Treebank grammar is relatively flat, containing a large of number of productions that go
from NP directly to a sequence of parts-of-speech. If noun phrases had more internal
structure, the grammar would need fewer rules, which, as we will see, would make pars-
ing faster and machine learning easier. Vadas and Curran (2011) propose to add additional
structure in the form of a new non-terminal called a nominal modifier (NML), e.g.,

(9.6) a. (NP (NN crude) (NN oil) (NNS prices)) (PTB analysis)
b. (NP (NML (NN crude) (NN oil)) (NNS prices)) (NML-style analysis).

Another proposal is to treat the determiner as the head of a determiner phrase (DP;
Abney, 1987). There are linguistic arguments for and against determiner phrases (e.g.,
Van Eynde, 2006). From the perspective of context-free grammar, DPs enable more struc-
tured analyses of some constituents, e.g.,

(9.7) a. (NP (DT the) (J] white) (NN whale)) (PTB analysis)
b. (DP (DT the) (NP (J] white) (NN whale))) (DP-style analysis).

Verb phrases

Verb phrases describe actions, events, and states of being. The PTB tagset distinguishes
several classes of verb inflections: base form (VB; she likes to snack), present-tense third-
person singular (VBZ; she snacks), present tense but not third-person singular (VBP; they
snack), past tense (VBD; they snacked), present participle (VBG; they are snacking), and past
participle (VBN; they had snacked).” Each of these forms can constitute a verb phrase on its

This tagset is specific to English: for example, VBP is a meaningful category only because English mor-
phology distinguishes third-person singular from all person-number combinations.
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own:

VP — VB | VBZ | VBD | VBN | VBG | VBP [9.41]

More complex verb phrases can be formed by a number of recursive productions,
including the use of coordination, modal verbs (MD; she should snack), and the infinitival
to (TO):

VP — MD VP She will snack [9.42]
VP — VBD VP She had snacked [9.43]
VP — VBzZ VP She has been snacking [9.44]
VP — VBN VP She has been snacking [9.45]
VP — To VP She wants to snack [9.46]
VP — VP Cc VP She buys and eats many snacks [9.47]

Each of these productions uses recursion, with the VP non-terminal appearing in both the
LHS and RHS. This enables the creation of complex verb phrases, such as She will have
wanted to have been snacking.

Transitive verbs take noun phrases as direct objects, and ditransitive verbs take two
direct objects:

VP — VBz NP She teaches algebra [9.48]
VP — VBG NP She has been teaching algebra [9.49]
VP — VBD NP NP She taught her brother algebra [9.50]

These productions are not recursive, so a unique production is required for each verb
part-of-speech. They also do not distinguish transitive from intransitive verbs, so the
resulting grammar overgenerates examples like *She sleeps sushi and *She learns Boyang
algebra. Sentences can also be direct objects:

VP — VBz S Hunter wants to eat the kimchi [9.51]
VP — VBZ SBAR Hunter knows that Tristan ate the kimchi [9.52]
The first production overgenerates, licensing sentences like *Hunter sees Tristan eats the

kimchi. This problem could be addressed by designing a more specific set of sentence
non-terminals, indicating whether the main verb can be conjugated.

Verbs can also be modified by prepositional phrases and adverbial phrases:

VP — VBz PP She studies at night [9.53]
VP — VBz ADVP She studies intensively [9.54]
VP — ADVP VBG She is not studying [9.55]
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Again, because these productions are not recursive, the grammar must include produc-
tions for every verb part-of-speech.

A special set of verbs, known as copula, can take predicative adjectives as direct ob-
jects:

VP — VBz ADJP She is hungry [9.56]
VP — VBP ADJP Success seems increasingly unlikely [9.57]

The PTB does not have a special non-terminal for copular verbs, so this production gen-
erates non-grammatical examples such as *She eats tall.

Particles (PRT as a phrase; RP as a part-of-speech) work to create phrasal verbs:

VP — VB PRT She told them to fuck off [9.58]
VP — VBD PRT NP They gave up their ill-gotten gains [9.59]

As the second production shows, particle productions are required for all configurations
of verb parts-of-speech and direct objects.

Other contituents

The remaining constituents require far fewer productions. Prepositional phrases almost
always consist of a preposition and a noun phrase,

PP — IN NP the whiteness of the whale [9.60]
PP — To NP What the white whale was to Ahab, has been hinted [9.61]

Similarly, complement clauses consist of a complementizer (usually a preposition, pos-
sibly null) and a sentence,

SBAR — IN S She said that it was spicy [9.62]
SBAR — S She said it was spicy [9.63]

Adverbial phrases are usually bare adverbs (ADVP — RB), with a few exceptions:

ADVP — RB RBR They went considerably further [9.64]
ADVP — ADVP PP They went considerably further than before [9.65]

The tag RBR is a comparative adverb.
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Adjectival phrases extend beyond bare adjectives (ADJP — JJ) in a number of ways:

ADJP — RB]JJ very hungry [9.66]
ADJP — RBR]] more hungry [9.67]
ADJP — J1s]1 best possible [9.68]
ADJP — RBJJR even bigger [9.69]
ADJP = J1Cc]y high and mighty [9.70]
ADJP = J1J7 West German [9.71]
ADJP — RB VBN previously reported [9.72]

The tags JIR and JJs refer to comparative and superlative adjectives respectively.

All of these phrase types can be coordinated:

PP —PP CC PP
ADVP —ADVP CC ADVP
ADJP —ADJP Cc ADJP
SBAR —SBAR CC SBAR

on time and under budget [9.73]
now and two years ago [9.74]
quaint and rather deceptive [9.75]
whether they want control [9.76]

or whether they want exports

9.2.4 Grammatical ambiguity

Context-free parsing is useful not only because it determines whether a sentence is gram-
matical, but mainly because the constituents and their relations can be applied to tasks
such as information extraction (chapter 17) and sentence compression (Jing, 2000; Clarke
and Lapata, 2008). However, the ambiguity of wide-coverage natural language grammars
poses a serious problem for such potential applications. As an example, Figure 9.13 shows
two possible analyses for the simple sentence We eat sushi with chopsticks, depending on
whether the chopsticks modity eat or sushi. Realistic grammars can license thousands or
even millions of parses for individual sentences. Weighted context-free grammars solve
this problem by attaching weights to each production, and selecting the derivation with
the highest score. This is the focus of chapter 10.

9.3 *Mildly context-sensitive languages

Beyond context-free languages lie context-sensitive languages, in which the expansion
of a non-terminal depends on its neighbors. In the general class of context-sensitive
languages, computation becomes much more challenging: the membership problem for
context-sensitive languages is PSPACE-complete. Since PSPACE contains the complexity
class NP (problems that can be solved in polynomial time on a non-deterministic Turing
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S
/\ S
NP VP _—
We V NP \ —
eat NP PP PN T~
\ T V NP IN NP
sushi IN NP \ \ \ \

| | eat sushi with chopsticks
with chopsticks

Figure 9.13: Two derivations of the same sentence

machine), PSPACE-complete problems cannot be solved efficiently if P # NP. Thus, de-
signing an efficient parsing algorithm for the full class of context-sensitive languages is
probably hopeless.™

However, Joshi (1985) identifies a set of properties that define mildly context-sensitive
languages, which are a strict subset of context-sensitive languages. Like context-free lan-
guages, mildly context-sensitive languages are parseable in polynomial time. However,
the mildly context-sensitive languages include non-context-free languages, such as the
“copy language” {ww | w € ¥*} and the language a™b"c¢™d". Both are characterized by
cross-serial dependencies, linking symbols at long distance across the string.!! For exam-
ple, in the language a"b™c"d"™, each a symbol is linked to exactly one c symbol, regardless
of the number of intervening b symbols.

9.3.1 Context-sensitive phenomena in natural language

Such phenomena are occasionally relevant to natural language. A classic example is found
in Swiss-German (Shieber, 1985), in which sentences such as we let the children help Hans
paint the house are realized by listing all nouns before all verbs, i.e., we the children Hans the
house let help paint. Furthermore, each noun’s determiner is dictated by the noun’s case
marking (the role it plays with respect to the verb). Using an argument that is analogous
to the earlier discussion of center-embedding (§ 9.2), Shieber describes these case marking
constraints as a set of cross-serial dependencies, homomorphic to a™b"cd", and therefore
not context-free.

9If PSPACE # NP, then it contains problems that cannot be solved in polynomial time on a non-
deterministic Turing machine; equivalently, solutions to these problems cannot even be checked in poly-
nomial time (Arora and Barak, 2009).

A further condition of the set of mildly-context-sensitive languages is constant growth: if the strings in
the language are arranged by length, the gap in length between any pair of adjacent strings is bounded by
some language specific constant. This condition excludes languages such as {aQn | n > 0}.
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Abigail eats the kimchi
NP (S\NP)/NP (NP/N) N
NP
>
S\NP
S

Figure 9.14: A syntactic analysis in CCG involving forward and backward function appli-
cation

As with the move from regular to context-free languages, mildly context-sensitive
languages can also be motivated by expedience. While finite sequences of cross-serial
dependencies can in principle be handled in a context-free grammar, it is often more con-
venient to use a mildly context-sensitive formalism like tree-adjoining grammar (TAG)
and combinatory categorial grammar (CCG). TAG-inspired parsers have been shown to
be particularly effective in parsing the Penn Treebank (Collins, 1997; Carreras et al., 2008),
and CCG plays a leading role in current research on semantic parsing (Zettlemoyer and
Collins, 2005). These two formalisms are weakly equivalent: any language that can be
specified in TAG can also be specified in CCG, and vice versa (Joshi et al., 1991). The re-
mainder of the chapter gives a brief overview of CCG, but you are encouraged to consult
Joshi and Schabes (1997) and Steedman and Baldridge (2011) for more detail on TAG and
CCG respectively.

9.3.2 Combinatory categorial grammar

In combinatory categorial grammar, structural analyses are built up through a small set
of generic combinatorial operations, which apply to immediately adjacent sub-structures.
These operations act on the categories of the sub-structures, producing a new structure
with a new category. The basic categories include S (sentence), NP (noun phrase), VP
(verb phrase) and N (noun). The goal is to label the entire span of text as a sentence, S.

Complex categories, or types, are constructed from the basic categories, parentheses,
and forward and backward slashes: for example, S/NP is a complex type, indicating a
sentence that is lacking a noun phrase to its right; S\NP is a sentence lacking a noun
phrase to its left. Complex types act as functions, and the most basic combinatory oper-
ations are function application to either the right or left neighbor. For example, the type
of a verb phrase, such as eats, would be S\NP. Applying this function to a subject noun
phrase to its left results in an analysis of Abigail eats as category S, indicating a successful
parse.

Transitive verbs must first be applied to the direct object, which in English appears to
the right of the verb, before the subject, which appears on the left. They therefore have the
more complex type (S\NP)/NP. Similarly, the application of a determiner to the noun at
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Abigail might learn  Swahili
NP (S\NP)/VP VP/NP NP
(S\NP)/NP _°
S\NP g
S

Figure 9.15: A syntactic analysis in CCG involving function composition (example modi-
fied from Steedman and Baldridge, 2011)

its right results in a noun phrase, so determiners have the type NP/N. Figure 9.14 pro-
vides an example involving a transitive verb and a determiner. A key point from this
example is that it can be trivially transformed into phrase-structure tree, by treating each
function application as a constituent phrase. Indeed, when CCG’s only combinatory op-
erators are forward and backward function application, it is equivalent to context-free
grammar. However, the location of the “effort” has changed. Rather than designing good
productions, the grammar designer must focus on the lexicon — choosing the right cate-
gories for each word. This makes it possible to parse a wide range of sentences using only
a few generic combinatory operators.

Things become more interesting with the introduction of two additional operators:
composition and type-raising. Function composition enables the combination of com-
plex types: X/Y oY/Z =g X/Z (forward composition) and Y\ Z o X\Y =g X\Z (back-
ward composition).!? Composition makes it possible to “look inside” complex types, and
combine two adjacent units if the “input” for one is the “output” for the other. Figure 9.15
shows how function composition can be used to handle modal verbs. While this sen-
tence can be parsed using only function application, the composition-based analysis is
preferable because the unit might learn functions just like a transitive verb, as in the exam-
ple Abiguail studies Swahili. This in turn makes it possible to analyze conjunctions such as
Abiguail studies and might learn Swahili, attaching the direct object Swahili to the entire con-
joined verb phrase studies and might learn. The Penn Treebank grammar fragment from
§ 9.2.3 would be unable to handle this case correctly: the direct object Swahili could attach
only to the second verb learn.

Type raising converts an element of type X to a more complex type: X =7 T'/(T\ X)
(forward type-raising to type T'), and X = T\(T/X) (backward type-raising to type
T). Type-raising makes it possible to reverse the relationship between a function and its
argument — by transforming the argument into a function over functions over arguments!
An example may help. Figure 9.15 shows how to analyze an object relative clause, a story
that Abigail tells. The problem is that fells is a transitive verb, expecting a direct object to
its right. As a result, Abiguail tells is not a valid constituent. The issue is resolved by raising

2The subscript B follows notation from Curry and Feys (1958).

Under contract with MIT Press, shared under CC-BY-NC-ND license.



222 CHAPTER 9. FORMAL LANGUAGE THEORY

a story that Abigail tells
NP  (NP\NP)/(S/NP) NP (S\NP)/NP
S/(S\NP)
S/NP
NP\NP g
NP

Figure 9.16: A syntactic analysis in CCG involving an object relative clause

Abigail from NP to the complex type (S/NP)\NP). This function can then be combined
with the transitive verb tells by forward composition, resulting in the type (S/NP), which
is a sentence lacking a direct object to its 1‘ight.13 From here, we need only design the
lexical entry for the complementizer that to expect a right neighbor of type (S/NP), and
the remainder of the derivation can proceed by function application.

Composition and type-raising give CCG considerable power and flexibility, but at a
price. The simple sentence Abigail tells Max can be parsed in two different ways: by func-
tion application (first forming the verb phrase tells Max), and by type-raising and compo-
sition (first forming the non-constituent Abigail tells). This derivational ambiguity does
not affect the resulting linguistic analysis, so it is sometimes known as spurious ambi-
guity. Hockenmaier and Steedman (2007) present a translation algorithm for converting
the Penn Treebank into CCG derivations, using composition and type-raising only when
necessary.

Exercises

1. Sketch out the state diagram for finite-state acceptors for the following languages
on the alphabet {a, b}.
a) Even-length strings. (Be sure to include 0 as an even number.)
b) Strings that contain aaa as a substring.
¢) Strings containing an even number of ¢ and an odd number of b symbols.
d) Strings in which the substring bbb must be terminal if it appears — the string

need not contain bbb, but if it does, nothing can come after it.

2. Levenshtein edit distance is the number of insertions, substitutions, or deletions
required to convert one string to another.

The missing direct object would be analyzed as a trace in CFG-like approaches to syntax, including the
Penn Treebank.
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a) Define a finite-state acceptor that accepts all strings with edit distance 1 from
the target string, target.

b) Now think about how to generalize your design to accept all strings with edit
distance from the target string equal to d. If the target string has length ¢, what
is the minimal number of states required?

3. Construct an FSA in the style of Figure 9.3, which handles the following examples:

e nation/N, national / ADJ, nationalize/V , nationalizer /N
e America/N, American/ ADJ, Americanize/V , Americanizer /N

Be sure that your FSA does not accept any further derivations, such as *nationalizeral
and *Americanizern.

4. Show how to construct a trigram language model in a weighted finite-state acceptor.
Make sure that you handle the edge cases at the beginning and end of the input.

5. Extend the FST in Figure 9.6 to handle the other two parts of rule 1a of the Porter
stemmer: -sses — ss, and -ies — -i.

6. § 9.1.4 describes Tp, a transducer that captures English orthography by transduc-
ing cook + ed — cooked and bake + ed — baked. Design an unweighted finite-state
transducer that captures this property of English orthography.

Next, augment the transducer to appropriately model the suffix -s when applied to
words ending in s, e.g. kiss+s — kisses.

7. Add parenthesization to the grammar in Figure 9.11 so that it is no longer ambigu-
ous.

8. Construct three examples — a noun phrase, a verb phrase, and a sentence — which
can be derived from the Penn Treebank grammar fragment in § 9.2.3, yet are not
grammatical. Avoid reusing examples from the text. Optionally, propose corrections
to the grammar to avoid generating these cases.

9. Produce parses for the following sentences, using the Penn Treebank grammar frag-
ment from § 9.2.3.

(9.8) This aggression will not stand.
(9.9) Ican getyou a toe.

(9.10) Sometimes you eat the bar and sometimes the bar eats you.

Then produce parses for three short sentences from a news article from this week.
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10. * One advantage of CCG is its flexibility in handling coordination:

(9.11) a. Hunter and Tristan speak Hawaiian
b. Hunter speaks and Tristan understands Hawaiian

Define the lexical entry for and as
and := (X/X)\X, [9.77]

where X can refer to any type. Using this lexical entry, show how to parse the two
examples above. In the second example, Swahili should be combined with the coor-
dination Abiguail speaks and Max understands, and not just with the verb understands.
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Chapter 10

Context-free parsing

Parsing is the task of determining whether a string can be derived from a given context-
free grammar, and if so, how. A parser’s output is a tree, like the ones shown in Fig-
ure 9.13. Such trees can answer basic questions of who-did-what-to-whom, and have ap-
plications in downstream tasks like semantic analysis (chapter 12 and 13) and information
extraction (chapter 17).

For a given input and grammar, how many parse trees are there? Consider a minimal
context-free grammar with only one non-terminal, X, and the following productions:

X =XX
X —aardvark | abacus | ... | zyther

The second line indicates unary productions to every nonterminal in . In this gram-
mar, the number of possible derivations for a string w is equal to the number of binary
bracketings, e.g.,

(w1 w2) wg) wa) ws),  (((w1 (w2 wsz)) wa)ws), (w1 (w2(wswas))) ws),

The number of such bracketings is a Catalan number, which grows super-exponentially

in the length of the sentence, C), = % As with sequence labeling, it is only possible to
exhaustively search the space of parses by resorting to locality assumptions, which make it
possible to search efficiently by reusing shared substructures with dynamic programming.
This chapter focuses on a bottom-up dynamic programming algorithm, which enables
exhaustive search of the space of possible parses, but imposes strict limitations on the
form of scoring function. These limitations can be relaxed by abandoning exhaustive
search. Non-exact search methods will be briefly discussed at the end of this chapter, and

one of them — transition-based parsing — will be the focus of chapter 11.
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S — NP VP

NP — NP PP | we | sushi | chopsticks
PP — INNP

IN  — with

VP — VNP | VPPP

\Y — eat

Table 10.1: A toy example context-free grammar

10.1 Deterministic bottom-up parsing

The CKY algorithm! is a bottom-up approach to parsing in a context-free grammar. It
efficiently tests whether a string is in a language, without enumerating all possible parses.
The algorithm first forms small constituents, and then tries to merge them into larger
constituents.

To understand the algorithm, consider the input, We eat sushi with chopsticks. Accord-
ing to the toy grammar in Table 10.1, each terminal symbol can be generated by exactly
one unary production, resulting in the sequence NP V NP IN NP. In real examples, there
may be many unary productions for each individual token. In any case, the next step
is to try to apply binary productions to merge adjacent symbols into larger constituents:
for example, V NP can be merged into a verb phrase (VP), and IN NP can be merged
into a prepositional phrase (PP). Bottom-up parsing searches for a series of mergers that
ultimately results in the start symbol S covering the entire input.

The CKY algorithm systematizes this search by incrementally constructing a table ¢ in
which each cell ¢[i, j] contains the set of nonterminals that can derive the span w;1.;. The
algorithm fills in the upper right triangle of the table; it begins with the diagonal, which
corresponds to substrings of length 1, and then computes derivations for progressively
larger substrings, until reaching the upper right corner ¢(0, M|, which corresponds to the
entire input, wy.)s. If the start symbol S is in ¢[0, M|, then the string w is in the language
defined by the grammar. This process is detailed in Algorithm 13, and the resulting data
structure is shown in Figure 10.1. Informally, here’s how it works:

e Begin by filling in the diagonal: the cells t[m — 1, m] for all m € {1,2,..., M}. These
cells are filled with terminal productions that yield the individual tokens; for the
word wg = sushi, we fill in ¢[1,2] = {NP}, and so on.

e Then fill in the next diagonal, in which each cell corresponds to a subsequence of
length two: t[0,2],¢[1,3],...,t[M — 2, M]. These cells are filled in by looking for

!The name is for Cocke-Kasami-Younger, the inventors of the algorithm. It is a special case of chart
parsing, because its stores reusable computations in a chart-like data structure.
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binary productions capable of producing at least one entry in each of the cells corre-
sponding to left and right children. For example, VP can be placed in the cell ¢[1, 3]
because the grammar includes the production VP — V NP, and because the chart
contains V € t[1,2] and NP € ¢[2, 3].

e At the next diagonal, the entries correspond to spans of length three. At this level,
there is an additional decision at each cell: where to split the left and right children.
The cell t[i, j] corresponds to the subsequence w;1.;, and we must choose some
split point i < k < j, so that the span w; 1., is the left child, and the span wy1.;
is the right child. We consider all possible k, looking for productions that generate
elements in t[i, k| and t[k, j]; the left-hand side of all such productions can be added
to t[i, j]. When it is time to compute ¢[7, j], the cells t[i, k| and t[k, j| are guaranteed
to be complete, since these cells correspond to shorter sub-strings of the input.

e The process continues until we reach ¢[0, M].

Figure 10.1 shows the chart that arises from parsing the sentence We eat sushi with chop-
sticks using the grammar defined above.

10.1.1 Recovering the parse tree

As with the Viterbi algorithm, it is possible to identify a successful parse by storing and
traversing an additional table of back-pointers. If we add an entry X to cell ¢[7, j] by using
the production X — Y Z and the split point k, then we store the back-pointer b[i, j, X] =
(Y, Z,k). Once the table is complete, we can recover a parse by tracing this pointers,
starting at [0, M, S], and stopping when they ground out at terminal productions.

For ambiguous sentences, there will be multiple paths to reach S € ¢[0, M]. For exam-
ple, in Figure 10.1, the goal state S € ¢[0, M] is reached through the state VP € ¢[1, 5], and
there are two different ways to generate this constituent: one with (eat sushi) and (with
chopsticks) as children, and another with (eat) and (sushi with chopsticks) as children. The
presence of multiple paths indicates that the input can be generated by the grammar in
more than one way. In Algorithm 13, one of these derivations is selected arbitrarily. As
discussed in § 10.3, weighted context-free grammars compute a score for all permissible
derivations, and a minor modification of CKY allows it to identify the single derivation
with the maximum score.

10.1.2 Non-binary productions

As presented above, the CKY algorithm assumes that all productions with non-terminals
on the right-hand side (RHS) are binary. In real grammars, such as the one considered in
chapter 9, there are other types of productions: some have more than two elements on the
right-hand side, and others produce a single non-terminal.
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Algorithm 13 The CKY algorithm for parsing a sequence w € X* in a context-free
grammar G = (N, X, R, S), with non-terminals N, production rules R, and start sym-
bol S. The grammar is assumed to be in Chomsky normal form (§ 9.2.1). The function
PICKFROM(b[i, j, X]) selects an element of the set b[i, j, X] arbitrarily. All values of ¢ and
b are initialized to ©.

1: procedure CKY(w,G = (N,X, R, S))

2: forme{l1...M}do

3: tfm —1,m] + {X : (X = wy,) € R}
4: for/ e {2,3,...,M} do > Iterate over constituent lengths
5: form € {0,1,...M — ¢} do > Iterate over left endpoints
6: forke {m+1m+2,....m+¢—1}do > Iterate over split points
7: for (X -Y Z) € Rdo > Iterate over rules
8: ifY etim, k] A Z € t[k,m + (] then
9: tim,m + €] < tfm,m + U X > Add non-terminal to table
10: bm,m + ¢, X] < bm,m + £, X]U (Y, Z, k) > Add back-pointers
11: if S € t[0, M] then
12: return TRACEBACK(S, 0, M, b)
13: else
14: return @

15: procedure TRACEBACK(X, i, j,b)
16: if j =i+ 1 then

17: return X

18: else

19: (Y, Z, k) <+ PICKFROM(b[i, 7, X])

20: return X — (TRACEBACK(Y, i, k,b), TRACEBACK(Z, k, j, b))

e Productions with more than two elements on the right-hand side can be binarized
by creating additional non-terminals, as described in § 9.2.1. For example, the pro-
duction VP — V NP NP (for ditransitive verbs) can be converted to VP — VP ;1405 /NP NP,
by adding the non-terminal VP jjtrqns /NP and the production VP jitrqns /NP — V NP.

e What about unary productions like VP — V? While such productions are not a
part of Chomsky Normal Form — and can therefore be eliminated in preprocessing
the grammar — in practice, a more typical solution is to modify the CKY algorithm.
The algorithm makes a second pass on each diagonal in the table, augmenting each
cell t[7, j] with all possible unary productions capable of generating each item al-
ready in the cell: formally, ¢[i, j] is extended to its unary closure. Suppose the ex-
ample grammar in Table 10.1 were extended to include the production VP — V,
enabling sentences with intransitive verb phrases, like we eat. Then the cell ¢[1, 2]
— corresponding to the word eat — would first include the set {V}, and would be
augmented to the set {V, VP} during this second pass.
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We eat sushi with chopsticks

We NP @ S o] S
VT~ Y
eat V <« VP %] VP
Voo ¥
sushi NP %] NP,
vy
with P <— PP
v
chopsticks NP

Figure 10.1: An example completed CKY chart. The solid and dashed lines show the back
pointers resulting from the two different derivations of VP in position ¢[1, 5].

10.1.3 Complexity

For an input of length M and a grammar with R productions and N non-terminals, the
space complexity of the CKY algorithm is O(M?2N): the number of cells in the chart is
O(M?), and each cell must hold O(N) elements. The time complexity is O(M3R): each
cell is computed by searching over O(M) split points, with R possible productions for
each split point. Both the time and space complexity are considerably worse than the
Viterbi algorithm, which is linear in the length of the input.

10.2 Ambiguity

In natural language, there is rarely a single parse for a given sentence. The main culprit is
ambiguity, which is endemic to natural language syntax. Here are a few broad categories:

e Attachment ambiguity: e.g., We eat sushi with chopsticks, I shot an elephant in my
pajamas. In these examples, the prepositions (with, in) can attach to either the verb
or the direct object.

e Modifier scope: e.g., southern food store, plastic cup holder. In these examples, the first
word could be modifying the subsequent adjective, or the final noun.

e Particle versus preposition: e.g., The puppy tore up the staircase. Phrasal verbs like
tore up often include particles which could also act as prepositions. This has struc-
tural implications: if up is a preposition, then up the staircase is a prepositional
phrase; if up is a particle, then the staircase is the direct object to the verb.

e Complement structure: e.g., The students complained to the professor that they didn’t
understand. This is another form of attachment ambiguity, where the complement
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that they didn’t understand could attach to the main verb (complained), or to the indi-
rect object (the professor).

e Coordination scope: e.g., “I see,” said the blind man, as he picked up the hammer and
saw. In this example, the lexical ambiguity for saw enables it to be coordinated either
with the noun hammer or the verb picked up.

These forms of ambiguity can combine, so that seemingly simple headlines like Fed
raises interest rates have dozens of possible analyses even in a minimal grammar. In a
broad coverage grammar, typical sentences can have millions of parses. While careful
grammar design can chip away at this ambiguity, a better strategy is combine broad cov-
erage parsers with data-driven strategies for identifying the correct analysis.

10.2.1 Parser evaluation

Before continuing to parsing algorithms that are able to handle ambiguity, let us stop
to consider how to measure parsing performance. Suppose we have a set of reference
parses — the ground truth — and a set of system parses that we would like to score. A
simple solution would be per-sentence accuracy: the parser is scored by the proportion of
sentences on which the system and reference parses exactly match.? But as any student
knows, it always nice to get partial credit, which we can assign to analyses that correctly
match parts of the reference parse. The PARSEval metrics (Grishman et al., 1992) score
each system parse via:

Precision: the fraction of constituents in the system parse that match a constituent in the
reference parse.

Recall: the fraction of constituents in the reference parse that match a constituent in the
system parse.

In labeled precision and recall, the system must also match the phrase type for each
constituent; in unlabeled precision and recall, it is only required to match the constituent
structure. As described in chapter 4, the precision and recall can be combined into an
F-MEASURE by their harmonic mean.

Suppose that the left tree of Figure 10.2 is the system parse, and that the right tree is
the reference parse. Then:

e S — w5 is true positive, because it appears in both trees.

“Most parsing papers do not report results on this metric, but Suzuki et al. (2018) find that a strong parser
recovers the exact parse in roughly 50% of all sentences. Performance on short sentences is generally much
higher.
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S
/\
NP VP S
We V NP NP VP
eat NP PP We VP PP
sushi IN NP V. NP IN NP
\ \ \ \ \ \
with chopsticks eat sushi with chopsticks
(a) system output (b) reference

Figure 10.2: Two possible analyses from the grammar in Table 10.1

e VP — way:s is true positive as well.
o NP — ws;s is false positive, because it appears only in the system output.
e PP — w5 is true positive, because it appears in both trees.

o VP — way.3 is false negative, because it appears only in the reference.

The labeled and unlabeled precision of this parse is % = (.75, and the recall is % = 0.75, for
an F-measure of 0.75. For an example in which precision and recall are not equal, suppose
the reference parse instead included the production VP — V NP PP. In this parse, the
reference does not contain the constituent ws.3, so the recall would be 1.3

10.2.2 Local solutions
Some ambiguity can be resolved locally. Consider the following examples,

(10.1) a. We met the President on Monday.
b. We met the President of Mexico.

Each case ends with a prepositional phrase, which can be attached to the verb met or the
noun phrase the president. If given a labeled corpus, we can compare the likelihood of the
observing the preposition alongside each candidate attachment point,

p(on | met)
plof | met)
*While the grammar must be binarized before applying the CKY algorithm, evaluation is performed on

the original parses. It is therefore necessary to “unbinarize” the output of a CKY-based parser, converting it
back to the original grammar.

p(on | President) [10.1]
p(of | President). [10.2]

NN
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A comparison of these probabilities would successfully resolve this case (Hindle and
Rooth, 1993). Other cases, such as the example we eat sushi with chopsticks, require con-
sidering the object of the preposition: consider the alternative we eat sushi with soy sauce.
With sufficient labeled data, some instances of attachment ambiguity can be solved by
supervised classification (Ratnaparkhi et al., 1994).

However, there are inherent limitations to local solutions. While toy examples may
have just a few ambiguities to resolve, realistic sentences have thousands or millions of
possible parses. Furthermore, attachment decisions are interdependent, as shown in the
garden path example:

(10.2) Cats scratch people with claws with knives.

We may want to attach with claws to scratch, as would be correct in the shorter sentence
in cats scratch people with claws. But this leaves nowhere to attach with knives. The cor-
rect interpretation can be identified only be considering the attachment decisions jointly.
The huge number of potential parses may seem to make exhaustive search impossible.
But as with sequence labeling, locality assumptions make it possible to search this space
efficiently.

10.3 Weighted Context-Free Grammars
Let us define a derivation 7 as a set of anchored productions,
T={X = o, (3,5,k)}, [10.3]

with X corresponding to the left-hand side non-terminal and a corresponding to the right-
hand side. For grammars in Chomsky normal formal, « is either a pair of non-terminals or
a terminal symbol. The indices i, j, k anchor the production in the input, with X deriving
the span w;1.;. For binary productions, w;,1.; indicates the span of the left child, and
wy41:; indicates the span of the right child; for unary productions, k is ignored. For an
input w, the optimal parse is,

7 = argmax V(7), [10.4]

T€T (w)

where 7 (w) is the set of derivations that yield the input w.

Define a scoring function ¥ that decomposes across anchored productions,

U(r) = > (X = a,(,5,k). [10.5]

(X—a,(i,5,k))eT

This is a locality assumption, akin to the assumption in Viterbi sequence labeling. In this
case, the assumption states that the overall score is a sum over scores of productions,
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¥() expy()
S — NP VP 0 1
NP —NPPP -1 3
— we -2 i
— sushi -3 %
— chopsticks -3 g
PP — INNP 0 1
IN  — with 0 1
vP — VNP -1 1
— VP PP -2 2
— MDYV -2 3
Vv — eat 0 1

Table 10.2: An example weighted context-free grammar (WCFG). The weights are chosen
so that exp () sums to one over right-hand sides for each non-terminal; this is required
by probabilistic context-free grammars, but not by WCFGs in general.

which are computed independently. In a weighted context-free grammar (WCFG), the
score of each anchored production X — (a, (4,4, k)) is simply ¥(X — «), ignoring the
anchor (7, j, k). In other parsing models, the anchors can be used to access features of the
input, while still permitting efficient bottom-up parsing.

Example Consider the weighted grammar shown in Table 10.2, and the analysis in Fig-
ure 10.2b.

U(7) =(S — NP VP) + 4(VP — VP PP) + (VP — V NP) + (PP — IN NP)

+ (NP — We) + (V — eat) + (NP — sushi) + ¢ (IN — with) + (NP — chopsticks)
[10.6]

—0-2-1+0-24+0-34+0-3=—11. [10.7]

In the alternative parse in Figure 10.2a, the production VP — VP PP (with score —2) is
replaced with the production NP — NP PP (with score —1); all other productions are the
same. As a result, the score for this parse is —10. This example hints at a problem with
WCEFG parsing on non-terminals such as NP, VP, and PP: a WCFG will always prefer
either VP or NP attachment, regardless of what is being attached! Solutions to this issue
are discussed in § 10.5.
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Algorithm 14 CKY algorithm for parsing a string w € X* in a weighted context-free
grammar (N, X, R, S), where N is the set of non-terminals and R is the set of weighted
productions. The grammar is assumed to be in Chomsky normal form (§ 9.2.1). The
function TRACEBACK is defined in Algorithm 13.
procedure WCKY(w,G = (N, %, R, S))
foralli,j, X do > Initialization
tli, 4, X] <0
bli, 7, X] + &
form e {1,2,...,M} do
forall X € N do
tm,m+ 1, X] + (X = Wy, (m,m + 1,m))
for/ e {2,3,... M} do
forme {0,1,...,M — (} do
forke {m+1,m+2,....m+{—1}do
tim,m + £, X] + ]gn;anw(X =Y Z,(m,m+ L,k)) +t[m,k, Y]+ tlk,m + ¢, Z)

bm,m + £, X] < argmax (X =Y Z,(m+ £,k)) + t[m, k, Y]+ t[k,m + ¢, Z]
k.Y, Z

return TRACEBACK(S, 0, M, b)

10.3.1 Parsing with weighted context-free grammars

The optimization problem in Equation 10.4 can be solved by modifying the CKY algo-
rithm. In the deterministic CKY algorithm, each cell t[7, j] stored a set of non-terminals
capable of deriving the span w;;1.;. We now augment the table so that the cell ¢[i, j, X]
is the score of the best derivation of w;,1.; from non-terminal X. This score is computed
recursively: for the anchored binary production (X — Y Z, (i, j, k)), we compute:

e the score of the anchored production, (X — Y Z, (3, j, k));
e the score of the best derivation of the left child, ¢[i, k, Y];
e the score of the best derivation of the right child, ¢k, j, Z].

These scores are combined by addition. As in the unweighted CKY algorithm, the table
is constructed by considering spans of increasing length, so the scores for spans ¢[i, k, Y]
and t[k, j, Z] are guaranteed to be available at the time we compute the score t[7, j, X]. The
value t[0, M, S] is the score of the best derivation of w from the grammar. Algorithm 14
formalizes this procedure.

As in unweighted CKY, the parse is recovered from the table of back pointers b, where
each b[i, j, X]| stores the argmax split point k£ and production X — Y Z in the derivation of
w; 1.5 from X. The top scoring parse can be obtained by tracing these pointers backwards
from b[0, M, S|, all the way to the terminal symbols. This is analogous to the computation
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of the best sequence of labels in the Viterbi algorithm by tracing pointers backwards from
the end of the trellis. Note that we need only store back-pointers for the best path to
t[i, 4, X|; this follows from the locality assumption that the global score for a parse is a
combination of the local scores of each production in the parse.

Example Let’s revisit the parsing table in Figure 10.1. In a weighted CFG, each cell
would include a score for each non-terminal; non-terminals that cannot be generated are
assumed to have a score of —oo. The first diagonal contains the scores of unary produc-
tions: ¢[0,1,NP] = —2, ¢[1,2, V] = 0, and so on. The next diagonal contains the scores for
spans of length 2: ¢[1,3,VP] = -1 +0—-3 = —4, t[3,5,PP] =0+ 0 — 3 = —3, and so on.
Things get interesting when we reach the cell ¢[1, 5, VP], which contains the score for the
derivation of the span ws.5 from the non-terminal VP. This score is computed as a max
over two alternatives,

#[1,5, VP] = max(¢»(VP — V